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sions from an operations standpoint, deciding what technologies should be used,
where facilities should be located, and managing the facilities making products or
providing services.
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Preface

Operations management may be defined as the design, operation, and improvement
of the production systems that create the firm’s primary products and services.
Operations decisions are made in the context of the firm as a whole (see Figure 1).
Starting from its marketplace (the firms’s customers for its products and services),
the firm determines its corporate strategy. This strategy is based on the corporate
mission, and in essence, it reflects how the firm plans to use all its resources and
functions (marketing, finance, and operations) to gain competitive advantage. The
operations strategy specifies how the firm will employ its production capabilities
to support its corporate strategy. The marketing strategy addresses how the firm
will sell and distribute its goods and services, and the finance strategy identifies
how best to utilize the firm’s financial resources.

Operations management decisions can be divided into three broad categories:

Marketplace

?
Corporate Strategy

?? ?

?

Finance Strategy Operations Strategy Marketing Strategy

Operations Management

?
? ? ? ?

People Plants Parts Processes

Planning and Control Systems

Production System

Inputs
-

Materials
Customers

Outputs
-

Produts
Services

Figure 1: Firm’s decision chart

iii



iv Preface

• strategic (long-term) decisions;

• tactical (intermediate-term) decisions;

• operational planning and control (short-term) decisions.

Strategic issues usually address such questions as:

• How will we make the product?

• Where do we locate the facilities and what are their capacities?

• When should we add more capacity?

The time horizon for strategic decisions is typically very long. These decisions im-
pact firm’s long-range effectiveness in terms of how it can address its customer’s
needs. Thus, for the firm to succeed, strategic decisions must be consistent with
firm’s corporate strategy. These decisions become operating constraints under
which firm’s decisions are made in both the intermediate and short term.

At the next level in the decision-making process, tactical planning primarily
addresses how to efficiently use materials and labor within the constraints of pre-
viously made strategic decisions. Issues to be managed on this level are:

• How many workers do we need, and when do we need them?

• Should we work overtime or put a second shift?

• When should we have material delivered?

• Should we have raw materials and finished products inventory?

Tactical decisions, in turn, become the operating constraints for making opera-
tional planning and control decisions. Issues at this level include:

• What jobs be done today or this week?

• Who is assigned to a particular task?

• What jobs are most urgent?

The hart of operations management is the management of production systems.
A production system uses operations resources to transform inputs (raw materials,
customer demands, or finished products from another production system) into out-
puts (finished products or services). Operations resources include people, plants,
parts, processes, and planning and control systems (five P’s of operations manage-
ment).

People are the direct and indirect workforce. Plants include the factories or
service units where production is carried out. Parts comprise the materials or sup-
plies. Processes include equipment and technological processes. Planning and
control systems perform procedures and information management to operate the
production system.



Chapter 1

Aggregate Production Planning

Aggregate production planning is intermediate-range planning (usually covers a
planning horizon from 6 to 18 months) that is concerned with determining pro-
duction rates for some product groups. An aggregate plan is to find an optimal
trade off of production rates, used resources, and inventory levels. In this chapter
we consider aggregate production planning of different complexity. Usually, these
models are integrated into supply chain systems that manage the flows of infor-
mation, materials, and services from raw material supplies through factories and
warehouses to the end customers.

1.1 Simple Inventory Models

Inventories are stocks of goods being held for future use or sale. Any company
dealing with physical products (, wholesalers, and retailers) maintains inventories.
Manufacturers need inventories of the materials required to produce their products.
They also need inventories of the finished products awaiting shipment. Similarly,
both wholesalers and retailers need to maintain inventories of goods to avoid short-
ages of these goods.

On the one hand, inventories are like money placed in a drawer, assets tied up
in investments that are not producing any return and, in fact, incurring a borrowing
cost (the cost of capital tied up in inventory). They also incur costs for the care
of the stored material (storage cost, insurance, taxes) and are subject to spoilage
and obsolescence. On the other hand, inventories provide a stable source of raw
materials required for production. A large inventory requires fewer replenishments
and may reduce ordering costs because of economies of scale.

1.1.1 Economic Order Quantity (EOQ)

Assumptions:

• one product;

• consumption is instantaneous;

1
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Figure 1.1: Inventory Level in EOQ

• zero lead time (the time period between the placement of order and receipt
of goods);

• constant demand of D units of product per time unit;

• fixed buying cost, C, for each item;

• fixed ordering cost, F , for each batch;

• fixed holding cost, H , for each item.

Typically, holding (or inventory carrying) cost includes:

• insurance cost: 2%;

• maintenance cost: 6%;

• opportunity cost of alternative investment: 7-10%

If the size of a lot is Q, then the total cost per consumption cycle (time interval
of length T = Q/D) is

F + CQ+

∫ Q/D

0
h(Q−Dt)dt = F + CQ+

HQ2

2D
.

The average cost per unit of time is

c(Q)
def
=

FD

Q
+
H

2
Q+ CD.

A graphical representation of EOQ model is give in Figure 1.1. We see that the
stock is replenished at the beginning of each cycle time interval.
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Minimizing c(Q), we find the optimal size, Q∗, of a batch (lot), which is the
positive solution of the equation c′(Q) = −FD

Q2 + H
2 = 0. Hence,

Q∗ =

√
2DF

H
(1.1)

and the optimal cycle time is

T ∗ = Q∗/D =

√
2F

HD
. (1.2)

Let us note that the optimal size of a batch does not depend on the item cost C.

Example 1.1 The deman for electical components is 2500 units per month. For
the store, to make an order it costs $300. One item costs $3. The annual inventory
holding cost rate is 20%. What are optimal lot size and cycle time?

Solution. The input for this example is: D = 2500, F = 300, C = 3, and
H = (3× 0.2)/12 = 0.05. Therefore, by (1.1) and (1.2),

Q∗ =

√
2 · 2500 · 300

0.05
≈ 5477.226, T ∗ = Q∗/D ≈ 5477.226/2500 ≈ 2.19.

Since the product is indivisible, the lot size must be integral. We could first
round down and then round up Q∗ to choose from two values, Q1 = 5477 and
Q2 = 5455, the one with the smallest value of c(Q):

c(Q1) = (300 · 2500)/5574 + (0.05 · 5574)/2 + 3 · 2500 ≈ 7773.903,

c(Q2) = (300 · 2500)/5575 + (0.05 · 5575)/2 + 3 · 2500 ≈ 7773.904.

Thus, we conclude that the best lot size is Q2 = 5575 with cycle time of T2 =
Q2/D = 5575/2500 = 2.23 months. �

1.1.2 Economic Production Quantity (EPQ)

Assumptions:

• production is instantaneous;

• constant production rate of P units of product per time unit;

• constant demand of D units of product per time unit;

• fixed setup cost, F , for each batch;

• fixed unit production cost, C, for each item;

• fixed holding cost, H , for each item.
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It is assumed that P > D. If the size of a batch (lot) is Q, then the production
time is Tp = Q/P . It is also assumed that production starts at the beginning of
each production cycle of Tc = Q/D units of time.

A graphical representation of EPQ model is given in Figure 1.2. We see that
during the production time the stock is being replenished to the maximum value
Q− DQ

P , and when pro at the beginning of each cycle time interval.
The total cost per production cycle is

F +H

∫ Q/P

0
(P −D)t dt+ h

∫ Q/D

Q/P
(Q−Dt)dt = F + +

HQ2(P −D)

2PD
.

The average cost per unit of time is

c(Q)
def
=

FD

Q
+
HQ(P −D)

2PD
.

Minimizing c(Q), we find the optimal size, Q∗, of a batch (lot), which is the
positive solution of the equation

c′(Q) = −FD
Q2

+
H(P −D)

2P
= 0.

Hence,

Q∗ =

√
2PDF

H(P −D)
(1.3)

and the optimal production time and production cycle are

T ∗p = Q∗/P, T ∗c = Q∗/D. (1.4)

Example 1.2 (Manufacturing Speakers for TV Sets) A television manufacturing
company produces its own speakers, which are used in the production of its tele-
vision sets. The television sets are assembled on a continuous production line at
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a rate of 10 000 per month, with one speaker needed per set. The production rate
of speakers is 40 000 per month, i.e., two times higher than the production rate
of TV sets. Therefore, there is no need to produce speakers on a continuous pro-
duction line, and the speakers are produced in batches and then the speakers are
placed into inventory until they are needed for assembly into television sets on the
production line.

Each time a batch is produced, a setup cost of $5 000 is incurred. The unit
production cost of a single speaker (excluding the setup cost) is $10. The estimated
holding cost of keeping a speaker in stock is $0.30 per month.

The company is interested in determining when to produce a batch of speakers
and how many speakers to produce in each batch.

Solution. In this example P = 40 000, D = 10 000, F = 12 000, C = 10,
H = 0.3. By (1.3),

Q∗ =

√
2 · 40000 · 10000 · 5000

0.3 · (40000− 10000)
≈ 21081.85,

and since

c(bQ∗c) =
12000 · 10000

21081
+

0.3 · 21081(40000− 10000)

2 · 40000 · 10000
= 5692.57,

c(dQ∗e) =
12000 · 10000

21082
+

0.3 · 21082(40000− 10000)

2 · 40000 · 10000
= 5692.30,

the optimal batch size is Q̄ = 21082, and the production must start at the beginning
of each production cycle of

T̄c = Q̄/D = 21082/10000 ≈ 2.11 months.

�

1.2 Single Product Lot-Sizing

The assumptions made in sections 1.1.1 and 1.1.2 are too ideal, and, therefore, may
be too restrictive in practice. The demand for a product is rarely constant because
of season fluctuations and many other reasons. The cost of product also depends
on the season. In this section we consider a more realistic model. The problem is
to decide on a production plan for a single product within a T -period horizon. For
each period t the following parameters are known:

ft: fixed production setup cost;

pt: unit production cost;

ht: unit inventory cost;
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dt: product demand;

ut: production (or transportation) capacity.

The problem is to determine the amounts of the product to be produced in each
of T periods so that the demands in all periods are fully satisfied, the production
(transportation) capacities are not violated, and the total cost of producing and
storing the product is minimum.

To formulate this problem as a mixed-integer program (MIP), we introduce the
following variables:

xt: amount of product produced in period t;

st: stock at the end of period t;

yt: with yt = 1 if production occurs in period t, and yt = 0 otherwise.

With these variables the problem is formulated as follows:

T∑
t=1

ptxt +

T∑
t=1

htyt +

T∑
t=1

ftyt → min (1.5a)

st−1 + xt = dt + st, t = 1, . . . , T, (1.5b)

xt ≤ utyt, t = 1, . . . , T, (1.5c)

st, xt ≥ 0, yt ∈ {0, 1}, t = 1, . . . , T. (1.5d)

Let us note that the initial stock, s0, is not a variable but an input parameter.
The balancing constraints (1.5b) ensure a proper transition from one period to

the next, e.g., the inventory from period t−1 plus the production in period t equals
the demand (sales) in period t plus the inventory to the next period.

The capacity constraints (1.5c) (such constraints are also called variable upper
bounds) say that in any period t the product is produced only if the production
occurs in this period (yt = 1), and the amount produced, xt, does not exceed the
production capacity for this period.

The objective is to minimize the total production cost.

1.2.1 MIPshell Implementation

We developed a C++ class Clotsize that solves the Single Product Lot-Size Prob-
lem instances written in text files. Clotsize has the following members:

• m iT: number of time periods;

• m ipPrice: integer array of size m iT, where m ipPrice[t] is unit production
cost in period t;

• m ipFixedCost: integer array of size m iT, where m ipFixedCost[t] is fixed
cost of producing in period t;
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• m ipHoldCost: integer array of size m iT, where m ipHoldCost[t] is unit
storage cost in period t;

• m ipDemand: integer array of size m iT, where m ipDemand[t] is demand
in period t;

• m ipCapacity: integer arrays of size m iT, where m ipCapacity[t] is produc-
tion capacity in period t.

The default constructor of Clotsize

Clotsize(const char *name)

gets as its input parameter a name of a text file (without extention .txt) describing
an instance of the Single Product Lot-Size Problem, and then calls the function

void readData(const char *fileName)

to read the file.
MIPshell implementation of IP (1.5) is given in Listing 1.1.

Listing 1.1: MIPshell model for single product lot-size problem

#define p(t) m ipPrice[t]
#define h(t) m ipHoldCost[t]
#define f(t) m ipFixedCost[t]
#define d(t) m ipDemand[t]
#define c(t) m ipCapacity[t]

int Clotsize::model()
{

int t, T=m iT, s0=m iInitStock;
VAR VECTOR x(”x”,REAL GE,T), s(”s”,REAL GE,T), y(”y”,BIN,T);

minimize(sum(t in [0,T)) (p(t)*x(t) + h(t)*s(t) + f(t)*y(t)));
s0 + x(0) == d(0) + s(0);
x(0) <= c(0)*y(0);
forall(t in [1,T)) {

s(t-1) + x(t) == d(t) + s(t);
x(t) <= c(t)*y(t);
}

optimize();
printSol(x,s);
return 0;
} // end of Clotsize::model
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You can find a complete Single Product Lot-Size MIPshell application in the
following folder

$MIPDIR/examples/mipshell/lotsize.

1.3 Lot-Sizing With Backordering
and Overtime Production

When production capacities are not sufficient to meet all demands in required
terms, sometimes it is allowed that a product demanded in period τ can be deliv-
ered in later period t (τ < t) with a discount of btτ that includes cost of expediting,
loss of customer goodwill (usually hard to measure), and a possible discount. This
is called backordering or backlogging.

In some cases it is also convenient to divide time periods into a number of
production periods. For example, we may produce in regular time and in over-
time. Overtime production is, of course, more expensive. Therefore, let us assume
that there are Tp production periods, and fτ , pτ , uτ are, respectively, fixed pro-
duction cost, unit production cost, and production capacity in production period
τ = 1, . . . , Tp. As before, ht and dt denote unit storage cost and demand in period
t = 1, . . . , T .

To model backordering, we use the following variables:

xτt: amount of product produced in production period τ to satisfy demand
of period t;

yτ = 1 if production occurs in production period τ , and yτ = 0 otherwise.

With these variables the model (1.5) is extended as follows:

Tp∑
τ=1

T∑
t=1

cτtxτt +

Tp∑
τ=1

fτyτ → min (1.6a)

Tp∑
τ=1

xτt = dt, t = 1, . . . , T, (1.6b)

T∑
t=1

xτt ≤ uτyτ , τ = 1, . . . , Tp, (1.6c)

xτt ≥ 0, τ = 1, . . . , Tp, t = 1, . . . , T, (1.6d)

yτ ∈ {0, 1}, τ = 1, . . . , Tp. (1.6e)

Here the costs cτt are defibed by the rule:

cτt
def
=


pτ , t = T (τ),

pτ + bτt, t < T (τ),

pτ +
∑τ−1

t̄=t ht̄, t > T (τ),
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where T (τ) denote the time period that contains production period τ .
The formulation (1.6) does not take into account initial stock. But we can

correct this by introducing in the first time period a production period, say indexed
with 0, with production capacity u0 equal to the initial stock, and production cost
p0 = 0.

Let us note in the conclusion that the famous transportation problem is a special
case of problem (1.6) when all fixed costs fτ are zeroes (what implies that all yτ
may be fixed to 1).

1.3.1 MIPshell Implementation

As usual, to solve Lot-Sizing Problem With Backlogging, we developed a C + +
class named Cbklotsize which definition is given in Listing 1.2.

Listing 1.2: MIPshell Class Cbklotsize: definition

#include <mipshell.h>

class Cbklotsize: public CProblem
{

int m iT, // number of time periods
m iTp, // number of production periods
*m ipFxCost, *m ipCapacity, *m ipDemand, *m ipCost;

public:
Cbklotsize(const char* name);

#ifdef THREADS
Cbklotsize(const Cbklotsize &other, int thread);
CMIP* clone(const CMIP *pMip, int thread);

#endif
virtual ∼Cbklotsize();

int model();
// implementation

void readData(const char* fileName);
void printSol(VAR VECTOR &x, VAR VECTOR &y);
};

Cbklotsize has the following members:

• m iT: number of demand periods;

• m iTp: number of production periods;

• m ipDemand: integer array of size m iT, where m ipDemand[t] is demand
in period t;
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• m ipCapacity: integer arrays of size m iTp, where m ipCapacity[tau] is pro-
duction capacity in production period tau.

• m ipFxCost: integer array of size m iTp, where m ipFxCost[tau] is fixed cost
of producing in production period tau;

• m ipCost: integer array of size m iTp×m iT, where m ipCost[tau×m iT+t]
is fixed cost of producing in production period tau for demand period t.

The constructor

Cbklotsize::Cbklotsize(const char* name): CProblem(name) {
m ipDemand=0;
char fileName[128];
strcpy(fileName,name);
strcat(fileName,”.txt”);
readData(fileName);

}

gets as its input parameter a name of a text file (without extension .txt) describ-
ing an instance of the Lot-Sizing Problem With Backlogging, and then calls the
function

void readData(const char *fileName)

to read the file which format will be explained in the next section.
MIPshell implementation of IP (1.6) in Listing 1.3 is almost straightforward.

Here we adopt the convention that if some c(τ, t) < 0, then the demand in period t
cannot be satisfied by the production in period τ ; therefore, we assign zero values
to all assignment variables x(τ, t) with negative costs.

Listing 1.3: MIPshell model for lot-sizing with backlogging

#define d(t) m ipDemand[t]
#define u(t) m ipCapacity[t]
#define f(t) m ipFxCost[t]
#define c(tau,t) m ipCost[tau*T+t]

int Cbklotsize::model()
{

int t, tau, T=m iT, Tp=m iTp;
VAR VECTOR x(”x”,REAL GE,Tp,T), y(”y”,BIN,Tp);

minimize(
sum(tau in [0,Tp), t in [0,T): c(tau,t) >= 0) c(tau,t)*x(tau,t) +
sum(tau in [0,Tp)) f(tau)*y(tau)
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);

forall(t in [0,T))
sum(tau in [0,Tp)) x(tau,t) == d(t);

forall(tau in [0,Tp))
sum(t in [0,T)) x(tau,t) <= u(tau)*y(tau);

forall(tau in [0,Tp), t in [0,T): c(tau,t) < 0)
x(tau,t) == 0;

optimize();
printSol(x,y);
return 0;
} // end of Cbklotsize::model

1.3.2 Aggregate Planning Example

A plant producing vehicles is to elaborate an aggregate plan for a month divided
into four weeks with demand forecast as 1000 units in each. The capacity available
is 4400 units per month:

• weeks 1 and 4: 600 in regular time and 200 in overtime;

• weeks 2 and 3: 1000 in regular time and 400 in overtime.

At the beginning of the month there are 100 cars in inventory. Therefore an excess
capacity is 500 (100 + 2 · 1400 + 2 · 800− 4 · 1000). However, it is highly desired
to have 200 units in inventory at the end of the month. The inventory cost (holding
cost + insurance + lost revenue) of one unit is $50 for each week. The average
workforce cost per car is $1500 in regular time, and $2000 in overtime. Overtime
is, of course, more expensive to start with; therefore there is an additional fixed
cost of $10000 to organize overtime production in each week.

Input data for model (1.6) is presented in Table 1.1. To solve this example prob-
lem with our program described in the previous section, we have to transfer data
from Table 1.1 into a text file which contents is given in Listing 1.4. Two numbers
in the first line are, respectively, the number of demand periods and the number
of production periods. the next three lines describe demands, capacities, and fixed
costs. In the rest nonempty lines describe the costs c(τ, t). Let us remember that
we agreed that a negative cost c(τ, t), say c(τ, t)− 1, indicates that the demand in
period t cannot be satisfied by production in period τ .

Listing 1.4: Input file for aggregate planning example
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Table 1.1: Aggregate planning data

Production Sales periods Fixed Total
periods 1 2 3 4

Stock costs capacity

Stock 0 50 100 150 200 0 100

Reg. time 1500 1550 1600 1650 1700 0 6001
Overtime 2000 2050 2100 2150 2200 10000 200

Reg. time 2000 1500 1550 1600 1650 0 10002
Overtime 2500 2000 2050 2100 2150 10000 400

Reg. time — 2000 1500 1550 1600 0 10003
Overtime — 2500 2000 2050 2100 10000 400

Reg. time — — 2000 1500 1550 0 6004
Overtime — — 2500 2000 2050 10000 200

Demand 1000 1000 1000 1000 200 4500

5 9
1000 1000 1000 1000 200
100 600 200 1000 400 1000 400 600 200
0 0 10000 0 10000 0 10000 0 10000

0 50 100 150 200
1500 1550 1600 1650 1700
2000 2050 2100 2150 2200
2000 1500 1550 1600 1500
2500 2000 2050 2100 2150

-1 2000 1500 1550 1600
-1 2500 2000 2050 2100
-1 -1 2000 1500 1550
-1 -1 2500 2000 2050

To solve our instance, we first enter the directory tests where aggrProd-
Plan.txt is stored, and then enter the command

../bin/bklotsize aggrProdPlan

to get in tests the text file named aggrProdPlan.sol with the content as
that in Listig 1.5.

Listing 1.5: Solution for aggregate planning example
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+--------+----------+------------+
| Prod. | produces | for demand |
| period | (units) | period |
+--------+----------+------------+
| 0 | 100 | 1 |
+--------+----------+------------+
| 1 | 600 | 1 |
+--------+----------+------------+
| 2 | 200 | 1 |
+--------+----------+------------+
| 3 | 100 | 1 |
| | 700 | 2 |
| | 200 | 5 |
+--------+----------+------------+
| 4 | 300 | 2 |
+--------+----------+------------+
| 5 | 1000 | 3 |
+--------+----------+------------+
| 6 | 200 | 4 |
+--------+----------+------------+
| 7 | 600 | 4 |
+--------+----------+------------+
| 8 | 200 | 4 |
+--------+----------+------------+
Production cost - 6660000
Fixed cost - 40000

1.4 Multiproduct Lot-Sizing

Production process

• transform raw materials into end products;

• usually there a series of transformation steps;

• each step consuming and producing intermediate products;

• raw materials, intermediate and end products may be inventoried.

We need to determine an aggregate production plan for n different products
on a number of machines of m types for a planning horizon that extends over T
periods.

Inputs parameters:
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• lt: duration (length) of period t;

• mit: number of machines of type i available in period t;

• fit: fixed cost of producing on machine of type i in period t;

• Tmin
i , Tmax

i : minimum and maximum working time of one machine of type i;

• cjt: per unit production cost of product j in period t;

• hjt: inventory holding cost per unit of product j in period t;

• djt: demand for product j in period t;

• ρjk: number of units of product j used for producing one unit of product k;

• τij : per unit production time of product j on machine of type i;

• sij : initial stock of product j at the beginning of the planning horizon.

• sfj : final stock of product j at the end of the planning horizon.

We need to determine the production levels for each product and each period so
that to minimize the total production and inventory expenses over planing horizon.

We introduce the following variables

xjt: amount of product j, produced in period t;

sjt: amount of product j in stock at the end of period t;

yit: number of machunes of type i working in period t.

Now we formulate the problem as follows:

T∑
t=1

n∑
j=1

(hjt sjt + cjt xjt) +
T∑
t=1

m∑
i=1

fit yit → min, (1.7a)

sij + xj1 = dj1 + sj1 +
n∑
k=1

ρjk xk,1, j = 1, . . . , n, (1.7b)

sj,t−1 + xjt = djt + sjt +
n∑
k=1

ρjk xk,t,

j = 1, . . . , n; t = 2, . . . , T, (1.7c)
n∑
j=1

τij xjt ≤ ltyit, i = 1, . . . ,m; t = 1, . . . , T, (1.7d)

sjT = sfj , j = 1, . . . , n, (1.7e)

0 ≤ sjt ≤ uj , xjt ≥ 0, j = 1, . . . , n; t = 1, . . . , T, (1.7f)

0 ≤ yit ≤ mit, yit ∈ Z, i = 1, . . . ,m; t = 1, . . . , T. (1.7g)
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The objective (1.7a) prescribes to minimize the total production and inventory
expenses. The balance equations (1.7b) and (1.7c) join two adjacent periods: prod-
uct in stock in period t − 1 plus that produced in period t equals the demand in
period t plus the amount of product used when producing other products, and plus
the amount in stock in period t. The inequalities (1.7d) require that the working
time of machines of any type be withing given limits; besides, if machine i does
not work in period t (yit = 0), then no product is produced by this machine (all
xjt = 0).

1.4.1 MIPSHEL implementation

We the multiproduct lot-size problem as a C++ class named Cmultlotsize. This
class has the following members to store problem instances:

• m iT: number of periods in time horizon;

• m iProdNum: number of products;

• m iMachTypeNum: number of machines;

• m ipMachNum: integer array of size m iMachTypeNum× m iT, where
m dpFixedCost[t×m iProdNum+i] is number of machibes of type i available
in period t;

• m dpFixedCost: real array of size m iMachTypeNum× m iT, where
m dpFixedCost[t×m iProdNum+i] is fixed cost of starting production on
machine i in period t;

• m ipStockCapm ipInitStock,m ipFinalStock: arrays of size m iProdNum, where

– m ipStockCap[j] is stock capacity for product j;

– m ipInitStock[j] and m ipFinalStock[j] are initial and final stocks of
product j;

• m dpCost: real array of size m iProdNum× m iT, where
m HoldingCost[t×m iProdNum+j] is inventory holding cost of product j in
period t;

• m dpHoldingCost: real array of size m iProdNum× m iT, where
m dpCost[t×m iProdNum+j] is cost of producing one unit of product j in
period t;

• m ipDemand: integer array of size m iProdNum× m iT, where
m ipDemand[t×m iProdNum+j] is demand for product j in period t;

• m ipDur: integer array of size m iT, where
m ipDur[t] is duration of period t;
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• m dpTau: real array of size m iMachTypeNum×m iProdNum, where
m dpTau(i×m iProdNum+j) is per unit production time of product j on ma-
chine i;

• m dpRho: real array of size m iProdNum×m iProdNum, where
m dpRho[j×m iProdNum+k) is number of units of product j used for pro-
ducing one unit of product k.

A straightforward implementation of MIP (1.7) is given in Listing 1.6.

Listing 1.6: MIPshell model for multiproduct lot-size problem

#define si(j) m ipInitStock[j]
#define sf(j) m ipFinalStock[j]
#define u(j) m ipStockCap[j]
#define m(i,t) m ipMachNum(t*m+i)
#define f(i,t) m ipFixedCost(t*m+i)
#define c(j,t) m dpCost[t*n+j]
#define h(j,t) m dpHoldingCost[t*n+j]
#define d(j,t) m ipDemand(t*n+j)
#define l(t) m ipDur[t]
#define tau(i,j) m dpTau[i*n+j]
#define rho(j,k) m dpRho[j*n+k]

int Cmultlotsize::model()
{

int i,j,t, m,n,T;
m=m iMachTypeNum; n=m iProdNum; T=m iT;
VAR VECTOR s(”s”,REAL GE,n,T), x(”x”,REAL GE,n,T), y(”y”,INT,m,T);

minimize(
sum(j in [0,n), t in [0,n)) h(j,t)*s(j,t)

+ sum(j in [0,n), t in [0,n)) c(j,t)*x(j,t)
+ sum(i in [0,m), t in [0,T)) f(i,t)*y(i,t)

);

forall(j in [0,n))
si(j) + x(j,0) ==
d(j,0) + s(j,0) + sum(k in [0,n)) rho(j,k)*x(k,0);

forall(t in [1,T), j in [0,n))
s(j,t-1) + x(j,t) ==
d(j,t) + s(j,t) + sum(k in [0,n)) rho(j,k)*x(k,t);

forall(i in [0,m), t in [0,T)) {
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Table 1.2: Unit Production Times

Products
Processes

1 2 3 4 5 6 7

Grinding 0.5 0.7 — — 0.3 0.2 0.5
Vertical drilling 0.1 0.2 — 0.3 — 0.6 —
Horizontal drilling 0.2 — 0.8 — — — 0.6
Boring 0.05 0.03 — 0.07 0.01 — 0.08
Planing — — 0.01 — 0.05 — 0.05
Packing 0.1 0.1 0.1 0.1 0.1 0.1 0.15

sum(j in [0,n)) tau(i,j)*x(j,t) <= l(t)*y(i.t);
y(i,t) <= m(i,t);
}
forall(j in [0,n)) {

forall(t in [0,T))
s(j,t) <= u(j);

s(j,T-1) == sf(j);
}

optimize();
printsol();
return 0;
} // end of Cmultlotsize::model

1.4.2 Example

An engineering factory makes seven products (numbered from 1 to 7) on the fol-
lowing machines: four grinders, two vertical drills, three horizontal drills, one
borer, one planer, and two packing devices. Products 5 and 7 are complete sets:
one unit of product 5 comprises one unit of product 1 and one units of product 3,
and one unit of product 7 comprises one unit of product 1 and two unit of product 6.
Unit production times (in hours) required on each process are given in Table 1.2.
A dash indicates that a product does not require a process. All required processes
on each product unit can be applied in any order. So, no sequencing problem need
to be considered.

The planning horizon consists of six months from January to June. The de-
mands for products are given in Table 1.3. The factory works a 5 day week with
two shifts of 8 hours each day. The number of working days in each month is also
presented in Table 1.3.
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Table 1.3: Demands for Products

Working Products
Months days 1 2 3 4 5 6 7

January 19 500 1000 300 300 800 200 100
February 19 600 700 200 0 400 300 150
March 22 300 600 0 0 500 400 100
April 22 200 300 400 500 200 0 100
May 21 0 100 500 100 1000 300 0
June 21 500 500 100 300 1100 500 60

Table 1.4: Machines Available and their Setup Costs

Setup Available machines
Machine cost Jan Feb Mar Apr May Jun

Grinder 500 6 5 5 6 5 5
Ver. driller 450 3 3 2 2 3 3
Hor. driller 450 5 3 5 5 5 5
Borer 550 2 2 1 2 1 2
Planer 1000 1 2 2 1 2 2
Packing dev. 400 2 2 2 2 2 2

During the planning horizon some machines will be down for maintenance:
The setup cost of a machine mainly is the fixed salary of an operator. As the
planer needs two operators, its setup cost is two times bigger than setup cost of the
other machines. Machine setup costs, and the numbers of machines of each type
available in each month are given in Table 1.4.

Unit production costs depend on the production period. It is 10 m %ore ex-
pensive to produce in the cold months (January, February, and March) than in the
warm ones (April, May, and June). These costs are given in Table 1.5.

It is possible to store up to 100 units of each product at a cost of $1 per unit per
month. There are not stock at the beginning of the horizon but it is desired to have
a stock of 50 units of each product at the end of June.

When and what should the factory produce to maximize the total profit?
To solve this example problem with our program described in the previous

section, we prepared an input text file test1.txt located in the folder

$MIPDIR/examples/mipshell/multlotsize/tests

The contents of test1.txt is given in Listing 1.7.
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Table 1.5: Production Costs

Products
Periods

1 2 3 4 5 6 7

January, February, March 17 19 16.5 8 9 16 25
April, May, June 16.3 17.1 14.9 7.2 8.1 14.4 22.5

Listing 1.7: Input file for multiproduct aggregate planning example

7 6 6

100 0 50 100 0 50 100 0 50 100 0 50
100 0 50 100 0 50 100 0 50

1 304
500 17 1 1000 19 1 300 16.5 1 300 8 1

800 9 1 200 16 1 100 25 1
500 3 450 2 450 3 550 1 1000 1 400 2

2 304
600 17 1 700 19 1 200 16.5 1 0 8 1

400 9 1 300 16 1 150 25 1
500 4 450 2 450 1 550 1 1000 1 400 2

3 352
300 17 1 600 19 1 0 16.5 1 0 8 1

500 9 1 400 16 1 100 25 1
500 4 450 2 450 3 550 0 1000 1 400 2

4 352
200 16.3 1 300 17.1 1 400 14.9 1 500 7.2 1

200 8.1 1 0 14.4 1 100 22.5 1
500 4 450 1 450 3 550 1 1000 1 400 2

5 336
0 16.3 1 100 17.1 1 500 14.9 1 100 7.2 1
1000 8.1 1 300 14.4 1 0 22.5 1

500 3 450 1 450 3 550 1 1000 1 400 2

6 336
500 16.3 1 500 17.1 1 100 14.9 1 300 7.2 1

1100 8.1 1 500 14.4 1 60 22.5 1
500 4 450 2 450 2 550 1 1000 0 400 2

0.5 0.7 0.0 0.0 0.3 0.2 0.5
0.1 0.2 0.0 0.3 0.0 0.6 0.0
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0.2 0.0 0.8 0.0 0.0 0.0 0.6
0.05 0.03 0.0 0.07 0.01 0.0 0.08
0.0 0.0 0.01 0.0 0.05 0.0 0.05
0.1 0.1 0.1 0.1 0.1 0.1 0.15

0 0 0 0 1 0 1
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

In test1.txt input data is structured as follows:

• Line 1: n, m, T ;

• Line 2: stock capacities u1, . . . , un;

• Line 3: initial stock s01, . . . , s0n;

• Line 4: final stock sf1, . . . , sfn;

• Each period is described by 3 lines, 3T lines in total:

– Line 4 + 3(t− 1): t, working time (in hours);

– Line 5 + 3(t− 1): d1t, c1t, h1t, . . . , dnt, cnt, hnt;

– Line 6 + 3(t− 1): f1t,m1t, . . . , fmt,mmt;

• Line i = 4 + 3T, . . . , 4 + 3T +m: τi1, . . . , τin;

• Line j = 4 + 3T +m, . . . , 4 + 3T +m+ n: rho j1, . . . , ρjn.

If we open a console window, enter the directory

$MIPDIR/examples/mipshell/multlotsize/tests

and then enter the command

multlotsize test1

we will get the solution in the text file test1.sol. In a concise form this solution
is presented in tables 1.6 and 1.7.
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Table 1.6: Machines Used

Used machines
Machine

Jan Feb Mar Apr May Jun

Grinder 6 5 3 2 3 5
Ver. driller 3 2 2 1 1 3
Hor. driller 5 3 2 2 5 4
Borer 1 1 1 1 1 1
Planer 1 1 1 1 1 1
Packing dev. 2 2 1 1 2 2

Table 1.7: Products Produced and Stocked

Products
Month

1 2 3 4 5 6 7

Produced 1400 1000 1100 300 800 300 100Jan
Stocked 0 0 0 0 0 0 0
Produced 1245 700 600 0 400 545 245Feb
Stocked 0 0 0 0 0 0 95
Produced 825 600 500 0 500 405 5Mar
Stocked 0 0 0 0 0 0 0
Produced 529 340 600 500 200 135 129Apr
Stocked 0 40 0 0 0 0 29
Produced 1104 96 1600 100 1100 294 0May
Stocked 4 36 0 0 100 0 29
Produced 1677 514 1200 350 1050 631 81Jun
Stocked 50 50 50 50 50 50 50
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Chapter 2

Operations Scheduling

In poorly scheduled job shops, it is not at all uncommon for jobs to wait for 95
percent of their total production cycle. This results in a long workflow cycle. Add
inventory time and receivables collection time to this and you get a long cash flow
cycle. Thus, workflow equals cash flow, and workflow is driven by the schedule.

A schedule is a timetable for performing activities, utilizing resources, or allo-
cating facilities. In this chapter, we discuss modeling aspects of some short-term
scheduling of jobs and processes.

2.1 Generalized Assignment Problem

The generalized assignment problem can be viewed as the following problem of
scheduling parallel machines to minimize total cost of processing a number of
jobs. Each of m independent jobs is to be processed by exactly one of n unrelated
parallel machines; job i takes pij time units and costs cij when processed by ma-
chine j, i = 1, . . . ,m, j = 1, . . . , n. The workload (the total working time) of
a machine j is at most lj . A schedule is an m × n-matrix {xij}, xij = 1 means
that job i is assigned to machine j. The Generalized Assignment Problem (GAP)
is to find a schedule of minimum cost that obeys all the above requirements. It is
modeled as the following IP:

m∑
i=1

n∑
j=1

cij xij → min (2.1a)

n∑
j=1

xij = 1, i = 1, . . . ,m, (2.1b)

m∑
i=1

pijxij ≤ lj , j = 1, . . . , n, (2.1c)

xij ∈ {0, 1}, i = 1, . . . ,m; j = 1, . . . , n. (2.1d)

23
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Constraints (2.1b) enforce that each job is assigned exactly to one machine.
Constraints (2.1c) insure that the total running time of each machine is at most its
maximum workload.

2.1.1 MIPshell implementation

A MIPshell implementation of GAP is given as a C++ class named Cgenassign.
This class describes problem instances via two MIPshell arrays:

• p: two-dimensional integer array, where p(i,j) is processing time of job i on
machine j;

• c: two-dimensional integer array, where c(i,j) is cost of processing job i on
machine j.

A MIPshell model of IP (2.1) is given in Listing 2.1.

Listing 2.1: MIPshell model for generalized assignment problem

int Cgenassign::model()
{

int i, j, m=c.GetSize(0), n=c.GetSize(1);
VAR VECTOR x(”x”,BIN,m,n);

minimize(sum(i in [0,m), j in [0,n)) c(i,j)*x(i,j));
forall(i in [0,m))

sum(j in [0,n)) x(i,j) == 1;
forall(j in [0,n))

sum(i in [0,m)) p(i,j)*x(i,j) <= l(j);

optimize();
printsol();
return 0;

}

We refer the user to the

$MIPDIR/examples/mipshell/genassign

directory for a complete application that reads data from a file and then solve the
instance by calling the genassign procedure.

2.1.2 Illustrative example

Suppose that a scheduler has ten jobs that can be performed on any of five ma-
chines. Input data to this example is given in Table 2.1. To solve this example by
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Table 2.1: GAP instance

J\M 1 2 3 4 5
1 110 16 25 78 59
2 65 69 54 28 71
3 19 93 45 45 9
4 89 31 72 83 20
5 62 17 77 18 39
6 37 115 87 59 97
7 89 102 98 74 61
8 78 96 87 55 77
9 74 27 99 91 5

10 88 97 99 99 51

a) Costs

J\M 1 2 3 4 5
1 5 99 79 34 41
2 46 47 56 74 40
3 97 9 57 58 95
4 28 70 44 28 91
5 56 99 29 87 73
6 80 1 13 48 15
7 28 4 3 27 51
8 25 18 17 56 41
9 32 92 13 26 96

10 31 17 2 12 55

b) Processing times

Machine 1 2 3 4 5
Working time 91 87 109 88 64

c) Machine working times

our program, we have to prepare a text file like one presented in Listing 2.2. In fact,
Listing 2.2 presents the contents of the text file test1.txt from the directory

$MIPDIR/examples/mipshell/genassign/tests

Listing 2.2: Input file for GAP example

dim(5): [91,87,109,88,64]

dim(10,5):
[[110,16,25,78,59],
[65,69,54,28,71],
[19,93,45,45,9],
[89,31,72,83,20],
[62,17,77,18,39],
[37,115,87,59,97],
[89,102,98,74,61],
[78,96,87,55,77],
[74,27,99,91,5],
[88,97,99,99,51]]
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dim(10,5):
[[5,99,79,34,41],
[46,47,56,74,40],
[97, 9,57,58,95],
[28,70,44,28,91],
[56,99,29,87,73],
[80, 1,13,48,15],
[28, 4, 3,27,51],
[25,18,17,56,41],
[32,92,13,26,96],
[31,17, 2,12,55]]

2.2 Flow Shop Scheduling

Consider a factory that produces n sorts of widgets. Each widget must first be
processed in sequence by machines 1, 2, . . . ,m. Processing time of widget i on
machine k is pik. The factory has orders for batches of widgets, each batch com-
prises one copy of each widget. The problem is to process all n widgets in a batch
as quickly as possible.

We take as variables:

sik: start time of processing widget i on machine k;

δijk = 1 if on machine k widget i is processed before widget j, and δijk = 0
otherwise;

τ : makespan, i.e., completion time of the last processed widget on the last
machine m.

With these variables the formulation is

τ → min (2.2a)

si,k−1 + pi,k−1 ≤ sik, i = 1, . . . , n; k = 2, . . . ,m, (2.2b)

sik + pik ≤ sjk + Tδjik, i = 1 . . . , n;

j = i+ 1, . . . , n; k = 1, . . . ,m, (2.2c)

δijk + δjik = 1, i = 1 . . . , n; j = i+ 1, . . . , n;

k = 1, . . . ,m, (2.2d)

sim + pim ≤ τ, i = 1, . . . , n, (2.2e)

τ ∈ R+, (2.2f)

sik ∈ R+, i = 1, . . . , n; k = 1, . . . ,m, (2.2g)

δijk ∈ {0, 1}, i, j = 1, . . . , n; k = 1, . . . ,m. (2.2h)
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Here T is a big number greater than the makespan, for example, we can take
T =

∑m
k=1

∑n
i=1 pik.

A MIPshell procedure that corresponds to the MIP (2.2) is presented in Figure
2.3. The only parameter of the procedure is a two-dimensional integer array p of
processing times. We define the number of machinesm and the number of widgets
n by the size of p. There is a minor difference between two models.To strengthen
the formulation (2.2), we have added constraints δi,j,m−1 = δijm to the MIPshell
model. These constraints are based on the well known fact that there exists an
optimal schedule according to which the widgets are processed in the same order
on two last machines.

Listing 2.3: MIPshell procedure for flow shop scheduling

int Cflowshop::model()
{

int i,j,k, m,n, T=0;
VAR VECTOR start(”start”,INT GE,n,m);
VAR VECTOR delta(”delta”,BIN,n,n,m);
VAR tau(”tau”,INT GE);
m=p.GetSize(0); n=p.GetSize(1);
T=p.Sum();

minimize(tau);
forall(k in [1,m), i in [0,n))

start(i,k-1) + p(i,k-1) <= start(i,k);
forall(k in [0,m), i in [0,n), j in [0,n): j != i) {

start(i,k) + p(i,k) <= start(j,k) + T*delta(j,i,k);
setpriority(delta(i,j,k),m-k);
}
forall(k in [0,m), i in [0,n), j in [i+1,n))

delta(i,j,k) + delta(j,i,k) == 1;
k=m-1;
forall(i in [0,n))

start(i,k) + p(i,k) <= tau;
forall(i in [0,n), j in [0,n): i != j)

delta(i,j,k-1) == delta(i,j,k);
optimize();
printsol();
return 0;
}

Any problem instance is given by a two dimensional array of integers p of size
n×m, where m and n are defined as follows:
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n=p.GetSize(0); m=p.GetSize(1);

Each row of p gives processing times of a widget on all m machines. Array p
is a member of the Cflowshop class, and the array is initialized in a Cflowshop
constructor from an input text file which name (without the ”.txt” extension) is
passed as the only program parameter.

2.3 A general scheduling problem

In a scheduling problem we have to fulfill a set of jobs on a number of proces-
sors using other resources under certain constraints such as restrictions on the job
completion times, priorities between jobs (one job cannot start until another one
is finished), and etc. The goal is to optimize some criterion, e.g, to minimize the
total processing time, which is the completion time of the last job (assuming that
the first task starts at time 0); or to maximize the number of processed jobs.

Let us also note that processors are special resources such as machines or work-
ers. We classify a unit of some resource as a processor if job processing times
depend on which units of the resource are used when processing that jobs. For in-
stance, when k machines are identical we can treat them as a resource with k units
available. But when machines are of different productivity, we can not treat them
as a single resource.

Next we formulate a very general scheduling problem which subsumes as spe-
cial cases a great deal of scheduling problems studied in the literature. We are
given n jobs to be processed on m processors. Let Pi ⊆ P

def
= {1, . . . ,m} denote

the subset of processors that can fulfill job j ∈ J def
= {1, . . . , n}. There are also q

non-perishable resources, with Rk units of resource k available per unit of time.
Each job j is characterized by the following parameters:

• wj : weight;

• lj , uj : release and due dates (the job must be processed during the time
interval [lj , uj ]);

• pij : processing time on processor i = 1, . . . ,m;

• rkj : needed amount of resource k = 1, . . . , q.

Precedence relations between jobs are given by an acyclical digraph G =
(J , E) defined on the set J of jobs: for any arc (j1, j2) ∈ J , job j2 cannot
start until job j1 is finished.

In general not all jobs can be processed. For a given schedule, let Uj = 0
if job j is processed, and Uj = 1 otherwise. Then the problem is to find such
a schedule for which the weighted number of not processed jobs,

∑n
j=1wjUj , is

minimum. Alternatively, we can say that our goal is to maximize the weighted sum
of processed jobs, which is

∑n
j=1wj(1− Uj).
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2.3.1 Event-driven formulation

We represent a schedule by the following two sets of decision variables:

• sj : start time of job j = 1, . . . , n;

• xij = 1 if job j is accomplished by processor i, otherwise, xij = 0, j ∈ Ji
and i = 1, . . . ,m.

In our formulation we also use four sets of auxiliary variables:

• yj = 1 if job j is processed, otherwise, yj = 0, j = 1, . . . , n;

• pj : processing time of job j = 1, . . . , n;

• δj1,j2 = 1 if job j1 starts not later than job j2 (sj1 ≤ sj2), otherwise, δj1,j2 =
0, j1, j2 = 1, . . . , n and j1 6= j2;

• γj1,j2 = 1 if job j1 is active (starts or being processed) when job j2 starts,
otherwise, γj1,j2 = 0, j1, j2 = 1, . . . , n and j1 6= j2.

In the above variables our scheduling problem is formulated as follows:

n∑
j=1

wjyj → max (2.3a)

yj =
∑
i∈Pj

xij , j = 1, . . . , n, (2.3b)

pj =
∑
i∈Pj

pijxij , j = 1, . . . , n, (2.3c)

sj2 − sj1 ≤ Tδj1,j2 , j1 6= j2, j1, j2 = 1, . . . , n, (2.3d)

δj1,j2 + δj2,j1 = 1, j2 = j1 + 1, . . . , n, j1 = 1, . . . , n− 1, (2.3e)

sj2 − sj1 ≤ pj1 + T · (3− xi,j1 − xi,j2 − δj1,j2),

j2 = j1 + 1, . . . , n, j1 = 1, . . . , n− 1, i = 1, . . . ,m, (2.3f)

δj1,j2 = 1, (j1, j2) ∈ E, (2.3g)

sj2 − sj1 ≥ pj1 , (j1, j2) ∈ E, (2.3h)

yj1 − yj2 ≥ 0, (j1, j2) ∈ E, (2.3i)

γj1,j2 ≤ δj1,j2 , j1 6= j2, j1, j2 = 1, . . . , n, (2.3j)

1− T + T · γj1,j2 ≤ sj1 + pj1 − sj2 ≤ T · (γj1,j2 + δj2,j1),

j1 6= j2, j1, j2 = 1, . . . , n, (2.3k)

rk,j1 +
∑

j2∈J\{j1}

rk,j2(γj1,j2 + γj2,j1) ≤ Rk,

j1 = 1, . . . , n, k = 1, . . . , q, (2.3l)
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sj ≥ ljyj , j = 1, . . . , n, (2.3m)

sj + pj ≤ ujyj , j = 1, . . . , n, (2.3n)

xij ∈ {0, 1}, j = 1, . . . , n, i = 1, . . . ,m, (2.3o)

δj1,j2 , γj1,j2 ∈ {0, 1}, j1 6= j2, j1, j2 = 1, . . . , n. (2.3p)

In this formulation, T denotes an upper bound on the completion time of any job.
For example, T may be the minimum of two next bounds:

T1
def
= max

1≤j≤n

(
dj + max

i∈Pi
tij

)
,

T2
def
=

n∑
j=1

max
i∈Pi

tij .

For the schedule defined by the values of variables (sj , xij), the equalities
(2.3b) are to determine accomplished jobs: yj = 1 if job j is accomplished by
some processor. Therefore, the objective (2.3a) is to maximize the weighted num-
ber of accomplished jobs.

The equalities (2.3b) and (2.3c) determine the processing times, τj , of all jobs
j. Let us note that processing times of all non-processed jobs are zeroes.

The constraints (2.3d), (2.3e) and (2.3f) together forbid any two jobs be simul-
taneously processed by the same processor. Let us note that the inequality (2.3f),
written for tasks j1, j2, and processor i, is a real restriction only if xi,j1 = xi,j2 =
δj1,j2 , i.e., both tasks j1 and j2 are assign to processor i, and j1 precedes task j2.

Two constraints, (2.3g) and (2.3h), express the precedence relations. The in-
equalities (2.3i) convey the requirement that, if a job is not accomplished, then all
its successors are not accomplished as well.

The inequalities (2.3j), (2.3k), and (2.3l) express the restrictions on the re-
sources.

The inequalities (2.3j) and (2.3k) allow each variable γj1,j2 to take value 1 only
if job j1 is active when job j2 starts. The restrictions on resources are given by the
inequalities (2.3l): at the moment when any job starts, the total amount of every
resource used by the active jobs must not exceed the limit on this resource.

The restrictions on release and due dates are given by the inequalities (2.3m)
and (2.3n).

2.3.2 Time-index formulation

A time-index formulation is based on time-discretization, i.e., the planning horizon
is divided into periods, and period t starts at time t and ends at time t + 1. Let
L = min1≤j≤n lj and U = max1≤j≤n uj . We consider the following time-index
formulation1:

1 M.E. Dyer, L.A. Wolsey. Formulating the single-machine sequencing problem with release
dates as a mixed integer program. Discrete Appl. Math. (1990) 26 255–270.
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n∑
j=1

∑
i∈Pj

uj−pij∑
t=lj

cijtxijt → max (2.4a)

m∑
i∈Pj

uj−pij∑
t=lj

xijt ≤ 1, j = 1, . . . , n, (2.4b)

∑
1≤j≤n:

lj≤t≤uj−pij

min{t,uj−pij}∑
τ=max{t−pij ,lj}

xijτ ≤ 1, t = L, . . . , U ; i = 1, . . . ,m, (2.4c)

m∑
i=1

∑
1≤j≤n:

lj≤t≤uj−pij

min{t,uj−pij}∑
τ=max{t−pij ,lj}

rkjxijτ ≤ Rk, t = L, . . . , U ; k = 1, . . . , q,

(2.4d)

yj =
∑
i∈Pj

uj−pij∑
t=lj

xijt, j = 1, . . . , n, (2.4e)

sj =
∑
i∈Pj

uj−pij∑
t=lj

t · xijt, j = 1, . . . , n, (2.4f)

pj =
∑
i∈Pj

uj−pij∑
t=lj

pij · xijt, j = 1, . . . , n, (2.4g)

yj1 − yj2 ≥ 0, (j1, j2) ∈ E, (2.4h)

sj2 − sj1 ≥ pj1 , (j1, j2) ∈ E, (2.4i)

xijt ∈ {0, 1}, i ∈ Pj ; t = lj , . . . , uj − pij ; j = 1, . . . , n. (2.4j)

Here a binary variable xijt takes value 1 if job j starts in period t on processor
i; otherwise, xijt = 0. The assignment constraints (2.4b) require that each job
can start at most once, and the capacity constraints (2.4c) state that any processor
fulfills at most one job during any time period. If we define cijt = wj , due to
(2.4b), the objective (2.4a) is to maximize the weighted number of processed jobs.

To formulute precedence relations we need three families of auxiliary vari-
ables, which are uniquely defined by the decision variables xijt. For each job j,
the equations (2.4e), (2.4f), and (2.4g) respectively determine the following values:

• yj = 1 if job j is processed; otherwise, yj = 0;

• sj : start time of job j;

• pj : processing time of job j.
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In these new variables the precedence relations are expressed by the inequali-
ties (2.4h) and (2.4i). For each pair of related jobs (j1, j2) ∈ E, (2.4h) requires that
j2 is not processed if j1 is not processed, while (2.4i) requires that, if both jobs, j1
and j2, are processed, then j1 must be finished when j2 starts.

An important advantage of the time-index formulation is that it can be used to
model many types of scheduling problems. For examples, if in constraint (2.4b) we
replace the inequality sign by the equality, and define cijt = −wj(t+ pij), we get
the problem of scheduling jobs with release and due dates on m machines to min-
imize weighted completion time, denoted as m|rj , dj |

∑
wjCj . In addition, the

LP-relaxation of the time-index formulation provides a strong bound: it dominates
the bounds provided by other MIP formulations. This is because its LP-relaxation
is nonpreemptive. That is, the relaxation is obtained by slicing jobs into pieces so
that each piece is processed without interruption.

The main disadvantage of the time-index formulation is its size: even for one
machine problems, there are n+ T constraints and may be up to nT variables. As
a result, for instances with many jobs and large processing intervals [rj , dj ], the
LP’s will be very big in size, and their solution time will be large.

MIPshell-implementation

To implement MIP (2.4), we developed a C++ class named Ctimeindex. Its defi-
nition and implementation you can find in the folder

$MIPDIR/examples/mipshell/timeindex.

This class has the following member to store problem instances:

• m iMachineNum: number of machines;

• m iJobNum: number of jobs;

• m ipRelease: integer array of size m iJobNum, where m ipRelease[j] is re-
lease date of job j;

• m ipDead: integer array of size m iJobNum, where m ipDead[j] is due date
of job j;

• m dpWeight: integer array of size m iJobNum, where m dpWeight[j] is weight
of job j.

• m ipProcTime: integer array of size m iMachineNum× m iJobNum, where
m ipProcTime[i + j× m iMachineNum] is processing time of job j on ma-
chine i.

We advise you to use macros to keep your MIPshell-implementations close to your
MIP-formulations. In this case we define the following macroes:
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#define r(j) m ipRelease[j]
#define d(j) m ipDead[j]
#define w(j) m dpWeight[j]
#define p(i,j) m ipProcTime[i*n+j]

Problem instances are read from text files by the function readData which is
defined in Ctimeindex as follows:

void readData(const char *fileName);

You can find a number of such files in the folder

$MIPDIR/examples/mipshell/timeindex/tests.

Now, let us turn to the implementation of formulation (2.4). To define decision
variables, we first build a set of indexes I representing the set

{(i, j, t) : t = rj , . . . , dj − pij ; j = 1, . . . , n; i = 1, . . . ,m},

and then declare an array of variables

VAR ARRAY x(”x”,BIN,I);

Now, with x(i,j,t) variables the MIPshell-formulation of MIP (2.4) is straightfor-
ward (see Listing 2.4).

Listing 2.4: MIPshell model for m|rj , dj |
∑
wjUj

#define r(j) m ipRelease[j]
#define d(j) m ipDead[j]
#define p(i,j) m ipProcTime[i+j*m]
#define w(j) m dpWeight[j]

int Ctimeindex::model()
{

int i,j,t,tau,
m=m iMachineNum,n=m iJobNum,
Rmin=std::numeric limits<int>::max(), Dmax=0;

INDEX SET I;
for (i=0; i < m; ++i) {

for (j=0; j < n; ++j) {
for (t=r(j); t <= d(j)-p(i,j); ++t)

I.add(INDEX(i,j,t));
if (Rmin > r(j)) Rmin=r(j);
if (Dmax < d(j)) Dmax=d(j);
}
}
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VAR ARRAY x(”x”,BIN,I);
// MIPshell model

maximize(sum(i in [0,m), j in [0,n), t in [r(j),d(j)-p(i,j)]) w(j)*x(i,j,t));

forall(j in [0,n))
sum(i in [0,m), t in [r(j),d(j)-p(i,j)]) x(i,j,t) <= 1;

forall(i in [0,m))
forall(t in [Rmin,Dmax])

sum(j in [0,n), tau in [t-p(i,j),t):
tau >= r(j) && tau <= d(j)-p(i,j)) x(i,j,tau) <= 1;

optimize();
printSol(x);
return 0;

} // end of Ctimeindex::model

When the MIP is solved (on return from optimize), we call printSol(x) to print
the solution to a file which name is the name of an input file (without extention)
concatenated with the extention ”.sol”.

An example

A firm provides copy services. Ten customers submitted their orders at the begin-
ning of the week. Specific scheduling data are as follows:

Processing Due dateName time (days) (days) Profit

1 3 5 3
2 4 6 4
3 2 7 2
4 6 7 5
5 1 2 2
6 1 4 1
7 2 6 2
8 3 7 3
9 4 7 3
10 3 3 4

There are only two copy machines. The firm must decide which orders to
process to maximize its total profit.

This is an instance of 2|dj |
∑
wjCj which is a special case of 2|rj , dj |

∑
wjCj

when all release dates are zeroes. To solve this instance with our timeindex
application, we prepared an input text file which contents is as follows.



2.4. Electricity Generation Planning 35

2 10
0 5 3 3
0 6 4 4
0 7 2 2
0 7 5 6
0 2 2 1
0 4 1 1
0 6 2 2
0 7 3 3
0 7 3 4
0 3 4 3

2.4 Electricity Generation Planning

The unit commitment problem is to develop an hourly (or half-hourly) electricity
production schedule spanning some period (a day or a week) so as to decide which
generators will be producing and at what levels.

Let T be the number of periods. Period 1 follows period T . We know the
demand dt for each period t. In each period the capacity of the active generators
must be at least q times of the demand (q is a level of reliability).

Let n be the number of generators, and let generator i have the following char-
acteristics:

• li, ui: minimum and maximum levels of production per period;

• r1
i , r

2
i : ramping parameters (when a generator is on in two successive peri-

ods, its output cannot decrease by more than r1
i , and increase by more than

r2
i );

• gi: start-up cost (if a generator is off in some period, it costs gi to start it in
the next period);

• fi, pi: fixed and variable costs (if in some period a generator is producing at
level v, it costs fi + piv).

With the natural choice of variables

xit = 1 if generator i produces in period t, and xit = 0, otherwise;

zit = 1 if generator i is switched on in period t, and zit = 0, otherwise;

yit: amount of electricity produced by generator i in period t,
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we get the typical formulation:

n∑
i=1

T∑
t=1

(gizit + fixit + piyit)→ min (2.5a)

n∑
i=1

yit = dt, t = 1, . . . , T, (2.5b)

n∑
i=1

uixit ≥ q dt, t = 1, . . . , T, (2.5c)

lixit ≤ yit ≤ uixit, i = 1, . . . , n; t = 1, . . . , T, (2.5d)

−r1
i ≤ yit − yi,((t−2+T ) mod T )+1 ≤ r2

i , i = 1, . . . , n; t = 1, . . . , T, (2.5e)

xit − xi,((t−2+T ) mod T )+1 ≤ zit, i = 1, . . . , n; t = 1, . . . , T, (2.5f)

zit ≤ xit, , i = 1, . . . , n; t = 1, . . . , T, (2.5g)

xit, zit ∈ {0, 1}, i = 1, . . . , n; t = 1, . . . , T, (2.5h)

yit ∈ R+, i = 1, . . . , n; t = 1, . . . , T. (2.5i)

To solve the unit commitment problem, we developed a C++ class Cunitcom
which stores a problem instance in the following members:

• m iGenNum: number of generators;

• m iT: number of periods;

• m dQ: level of reliability;

• m ipDemand: array of size m iT, where m ipDemand[t] is demand at period
t;

• m ipLoCapacity: array of size m iGenNum, where m ipUpCapacity[i] is
minimum level of production per one period;

• m ipUpCapacity: array of size m iGenNum, where m ipUpCapacity[i] is
maximum level of production per one period;

• m ipRminus, m ipRPlus: arrays of size m iGenNum, where m ipRminus[i]
and m ipRPlus[i] are ramping parameters for generator i;

• m ipStartUpCost: array of size m iGenNum, where m ipStartUpCost[i] is
start-up cost of generator i;

• m ipFixedCost, m ipUnitCost: array of size m iGenNum, where m ipFixed-
Cost[i] and m ipUnitCost[i] are fixed and variable costs for generator i.

The default constructor of Cunitcom
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Cunitcom(const char *name)

just calls the function

void readData(const char *fileName)

to read a text file which name (without extension ”.txt”) is given by the parameter
fileName. The data read from the file is stored in the class members described
above. The function also allocates memory for the arrays mentioned earlier.

A straightforward MIPshell implementation of MIP model (2.5) is given in
Listing 2.5.

Listing 2.5: MIPshell model for unit commitment problem

#define d(t) m ipDemand[t]
#define u(i) m ipUpCapacity[i]
#define l(i) m ipLoCapacity[i]
#define r1(i) m ipRminus[i]
#define r2(i) m ipRPlus[i]
#define g(i) m ipStartUpCost[i]
#define f(i) m ipFixedCost[i]
#define p(i) m ipUnitCost[i]

int Cunitcom::midel()
{

double q=m iQ;
int i,t, n=m iGenNum, T=m iT;
VAR VECTOR x(”x”,BIN,n,T),

y(”y”,REAL GE,n,T),
z(”z”,BIN,n,T);

minimize(sum(i in [0,n), t in [0,T)) (g(i)*z(i,t) + f(i)*x(i,t) + p(i)*y(i,t)));
forall(t in [0,T)) {

sum(i in [0,n)) y(i,t) == d(t);
sum(i in [0,n)) u(i)*x(i,t) >= q*d(t);
}
forall(i in [0,n), t in [0,T)) {

l(i)*x(i,t) <= y(i,t);
y(i,t) <= u(i)*x(i,t);
-r1(i) <= y(i,t) - y(i,(t-1+T) % T) <= r2(i);
x(i,t) - x(i,(t-1+T) % T) <= z(i,t);
z(i,t) <= x(i,t);
}
optimize();
printSol(y);
}
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2.4.1 Example

To test the model, let us solve an instance of the unit commitment problem de-
scribed in the text file test1.txt which contents is given in Listing 2.6.

Listing 2.6: Unit commitment example

5 12 1.2
50 60 50 100 80 70 90 60 50 120 110 70
2 12 12 12 100 1 10
2 12 12 12 100 1 10
5 35 35 35 300 5 4

20 50 50 50 400 10 3
40 75 15 20 800 15 2

Three numbers in the first line show that the problem is to schedule n = 5
generators over T = 12 time periods of 2-hours each. The level of reliability
is q = 1.2. The second line contains demands fo electricity in all 12 periods.
Each of the other five lines — starting from the third — describes a generator in
the following order: minimum and maximum levels of production, two ramping
parameters, followed by start-up, fixed and variable costs. Let us note that all five
generators are of different types, and the ramping constraints only apply to the fifth
generator: r1

5 = 15, r2
5 = 20 (for other four generators we set r1

i = r2
i = ui).

To solve our example, we enter the following commands

cd $MIPDIR/examples/unitcom/tests/test1; unitcom

The program writes the solution to the file test1.sol. In a concise form the
solution is presented in Table 2.2.

2.5 Short-Term Scheduling in Chemical Industry

It is easier to start with an example2 Two products, 1 and 2, are produced from
three different feedstocks A,B, and C according to the following recipe:

1. Heating: Heat A for 1 h.

2. Reaction 1: Mix 50% feed B and 50% feed C and let them for 2 h to form
intermediate BC.

3. Reaction 2: Mix 40% hot A and 60% intermediate BC and let them react for
2 h to form intermediate AB (60%) and product 1 (40%).

2 E. Kondili, C.C. Pantelides, and R.W.H. Sargent. A general algorithm for short-term scheduling
of batch operations — I. MILP formulation. Computers chem. Engng. 17 (1993) 211–227.
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Table 2.2: Solution to the unit commitment instance

t \ i 1 2 3 4 5

0–2 0 0 5 0 45
2–4 0 0 5 0 55
4–6 0 0 5 0 45
6–8 0 2 33 0 65

8–10 0 0 5 0 75
10–12 0 0 5 0 65
12–14 0 0 20 0 70
14–16 0 0 5 0 55
16–18 0 0 5 0 45
18–20 0 0 5 50 65
20–22 0 0 5 30 75
22–24 0 0 10 0 60

4. Reaction 3: Mix 20% feed C and 80% intermediate AB and let them react
for 1 h to form impure E.

5. Separation: Distill impure E to separate pure product 2 (90%, after 1 h) and
pure intermediate AB (10% after 2 h). Discard the small amount of residue
remaining at the end of the distillation. Recycle the intermediate AB.

The above process is represented by the State-Task-Network (STN) shown in Fig-
ure 2.1.

The following processing equipment and storage capacity are available.

Equipment :

Heater: Capacity 100 kg, suitable for task 1;

Reactor 1: Capacity 80 kg, suitable for tasks 2,3,4;

Reactor 2: Capacity 50 kg, suitable for tasks 2,3,4;

Still: Capacity 200 kg, suitable for task 5.

Storage capacity :

For feeds A,B,C: unlimited;

For hot A: 100 kg;

For intermediate AB: 200 kg;

For intermediate BC: 150 kg;

For intermediate E: 100 kg;
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Figure 2.1: State-task network for example process

For products 1,2: unlimited.

A number of parameters are associated with the tasks and the states defining
the STN and with the available equipment items. More specifically:

Task i is defined by: Ui: set of units capable of performing task i;

Sin
i : set of states that feed task i;

Sout
i : set of states that task i produces as its outputs;

ρin
is: proportion of input of task i from state s ∈ Sin

i ;
∑

s∈Sin
i
ρin
is = 1;

ρout
is : proportion of output of task i to state s ∈ Sout

i ;
∑

s∈Sout
i
ρout
is = 1;

pis: processing time for output of task i to state s ∈ Sout
i ;

di: duration (completion time) for task i, di
def
= maxs∈Sout

i
pis;

State s is defined by: T out
s : set of tasks receiving material from state s;

T in
s : set of tasks producing material in state s;

z0
s : initial stock in state s;

us: storage capacity dedicated to state s;

cP
s : unit cost (price) of product produced in state s;

cS
s : cost of storing a unit amount of material in state s.



2.5. Short-Term Scheduling in Chemical Industry 41

Unit j is characterized by: Ij: set of tasks that can be performed by unit j;

V max
ij , V min

ij : respectively, maximum and minimum load of unit j when
used for performing task i.

Let n, q,m denote, respectively, the number of tasks, states, and units. The
scheduling problem for batch processing system is stated as:

Given: the STN of a batch process and all the information associated with it, as
well as a time horizon of interest.

Determine: the timing of the operations for each unit (i.e. which task, if any, the
unit performs at any time during the time horizon); and the flow of materials
through the network.

Goal: maximize the total cost of the products produced minus the total storage
cost during the time horizon.

2.5.1 MIP formulation

Our formulation is based on a discrete time representation. The time horizon of
interest is divided into a number of intervals of equal duration. We number the
intervals from 1 to H, and assume that interval t starts at time t and ends at time
t+1. Events of any type — such as the start or end of processing individual batches
of individual tasks, changes in the availability of processing equipment and etc. —
are only happen at the interval boundaries.

Pre-emptive operations are not allowed and materials are transferred instanta-
neously from states to tasks and from tasks to states.

We introduce the following variables:

xijt = 1 if unit j starts processing task i at the beginning of time period t;
xijt = 0 otherwise;

yijt: amount of material (batch size) that starts undergoing task i in unit j at
the beginning of time period t.

zst: amount of material stored in state s, at the beginning of time period
t. To simplify presentation, we introduce an additional time interval H + 1
that represents the end of the time horizon. Then the value of zs,H+1 is the
amount of material in state s produced during the time horizon.

Now the MIP model is written as follows:

q∑
s=1

cP
s zs,H+1 −

q∑
s=1

H∑
t=1

cS
szst → max, (2.6a)∑

i∈Ij

xijt ≤ 1, j = 1, . . . ,m; t = 1, . . . ,H, (2.6b)
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∑
l∈Ij

t+di−1∑
τ=t

xljτ ≤ 1 +M(1− xijt), j = 1, . . . ,m; i ∈ Ij ;

t = 1, . . . ,H, (2.6c)

V min
ij xijt ≤ yijt ≤ V min

ij xijt, j = 1, . . . ,m; i ∈ Ij ;
t = 1, . . . ,H, (2.6d)

0 ≤ zst ≤ us, s = 1, . . . , q; t = 1, . . . ,H, (2.6e)

zs,t−1 +
∑

i∈T out
s : t>pis

ρout
is

∑
j∈Ui

yij,t−pis = zst +
∑
i∈T in

s

ρin
is

∑
j∈Ui

yijt,

s = 1, . . . , q; t = 1, . . . ,H, (2.6f)

zs,H +
∑

i∈T out
s : t>pis

ρout
is

∑
j∈Ui

yij,H−pis = zs,H+1, s = 1, . . . , q, (2.6g)

xijt = 0, t > H − di, j = 1, . . . ,m; i ∈ Ij , (2.6h)

xijt ∈ {0, 1}, yijt ∈ R+, j = 1, . . . ,m; i ∈ Ij ; t = 1, . . . ,H, (2.6i)

zst ∈ R+, s = 1, . . . , q; t = 1, . . . ,H + 1. (2.6j)

The objective (2.6a) is to maximize the total profit that equals the total cost of
the produced materials minus the expenses for storing materials during the time
horizon. The inequalities (2.6b) enforce that at any time t, an idle unit j can only
start one task. The constraints (2.6c) impose the requirement that, if unit j starts
performing task i at time t, then it cannot start any other task until i is finished.
Used in (2.6c), M is a sufficiently big number so that the constraint is only binding
if xijt = 1. The constraints (2.6d) enforce that the batch size of any task must
be within the minimum and maximum capacities of the unit performing the task.
The constraints (2.6e) impose stock limitations: the amount of material stored in
any state s must not exceed the storage capacity for this state. Material balance
constraints (2.6f) require that for any state s at each period t, the amount of material
entering the state (the stock from the previous period plus the input delivered from
the tasks that finished at period t) equals the amount of material leaving the state
(the stock at t plus the amount of material consumed by the tasks that started at
t). Note that zs0 is not a variable but a constant z0

s , the initial stock at state s. The
constraints (2.6g) are specializations of the balance constraints for period H + 1,
at this period no task starts. The constraints (2.6h) enforce tasks finish within the
time horizon.

2.5.2 MIPshell Implementation

Our test STN is represented in a file whose contents is as in Listing 2.7. We see that
there are five task. For example, the task named ”Reaction 2” can be processed by
the units Reactor 1 and Reactor 2. This task gets materials from states representing
products Hot A and Int BC; these materials are mixed in the proportions of 40%
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and 60%. Furthermore, the task output materials are directed to states representing
products Int AB and Prod 1 in the proportions of 60% and 40%. Production of
both output products takes two hours.

Next we have nine states. For instance, the state representing the intermediate
product AB is described by the set {3} of task receiving product AB, the set {2, 4}
of task supplying the state, and the capacity of the state stock that equals 200kg,
initial stock 0.0kg, and storing a unit of the product costs 0.1. It is undesirable to
have any intermediate remaining in storage at the end of the horizon, and therefore
the cost of all the intermediates is a negative value of -1. The three raw materials
(Feed A, Feed B, and Feed C) are given costs of zero. A value of one kilogram of
each of the two output products (Prod 1 and Prod 2) is 10 units.

The last section of the input file describes equipment units. Say Reactor 1 can
fulfill tasks Reaction 1,Reaction 2,Reaction 3, and has lower and upper capacities
of zero and 80kg, respectively.

Listing 2.7: Input file for example process

10 - time horizon

begin(tasks)
Heating
{Heater}
{Fead_A} 1.0
{Hot_A} 1.0 1
Reaction_1
{Reactor_1, Reactor_2}
{Fead_B,Fead_C} 0.5 0.5
{Int_BC} 1.0 2
Reaction_2
{Reactor_1,Reactor_2}
{Hot_A,Int_BC} 0.4 0.6
{Int_AB,Prod_1} 0.6 2 0.4 2
Reaction_3
{Reactor_1, Reactor_2}
{Fead_C,Int_AB} 0.2 0.8
{Impure_E} 1.0 1
Separation
{Still}
{Impure_E} 1.0
{Int_AB,Prod_2} 0.1 2 0.9 1
end(tasks)

begin(states)
Fead_A 1000 1000 0.0 0.0
Fead_B 1000 1000 0.0 0.0
Fead_C 1000 1000 0.0 0.0
Hot_A 100 0.0 0.1 -1.0
Int_AB 200 0.0 0.1 -1.0
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Int_BC 150 0.0 0.1 -1.0
Impure_E 100 0.0 0.1 -1.0
Prod_1 1000 0.0 0.0 10.0
Prod_2 1000 0.0 0.0 10.0

end(states)

begin(units)
Heater
{Heating} 0 100
Reactor_1
{Reaction_1,Reaction_2,Reaction_3} 0 80
Reactor_2
{Reaction_1,Reaction_2,Reaction_3} 0 50
Still
{Separation} 0 200

end(units)

To solve the batch scheduling problem we developed a C++ class, named
Cbatch, which definition and implementation you can find in the folder

$MIPDIR/examples/mipshell/batch.

This class has the following members to describe problem instances:

• H: number of time periods in planning horizon;

• TASKS: set of tasks, ;

• STATES: set of states;

• UNITS: set of units;

• K: array of sets, where K(i) is set of units capable of performing task i;

• Sin: array of sets, where Sin(i) is set of states that feed task i;

• Sout: array of sets, where Sout(i) is set of states to which task i produces as
its outputs;

• Tin: array of sets, where Tin(s) is set of tasks producing material in state s;

• Tout: array of sets, where Tin(s) is set of tasks receiving material from state s;

• I: array of sets, where I(j) is set of tasks that can be performed by unit j;

• rho: two-dimensional real array, where rho(i,j) is proportion of input of task i
from state s in Sin(i);

• u: real array, where u(s) is storage capacity dedicated to state s;
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• z0: real array, where z0(s) is initial stock in state s;

• cs: real array, where cs(s) is cost of storing a unit amount of material in
state s;

• cp: real array, where cp(s) is unit cost (price) of product produced in state s;

• Vmin, Vmax: two-dimensional real arrays, where Vmin(i,j), Vmax(i,j) are, re-
spectively, maximum and minimum load of unit j when used for performing
task i.

• p: two-dimensional integer array, where p(i,s) is processing time for output
of task i to state s in Sout(i);

• dur: integer array, where dur(i) is duration (completion time) for task i.

Here we presented only three crucial procedures of Cbatch:

• Listing 2.8 — procedure that reads input files;

• Listing 2.9 — procedure that implements MIP (2.6);

• Listing 2.10 — procedure that prints optimal schedules.

Listing 2.8: Implementation of Cbatch: procedure that reads input files

void readSTN(const char *fileName)
{

std::ifstream fin(fileName);
if (!fin.is open()) {

throw new CFileException(”Cbatch::readSTN”,fileName);
}

char str[256];
int w,q;
INDEX state, tsk, unit;

fin >> H;
// reading tasks

for (fin.getline(str,255);
strcmp(str,”begin(tasks)”); fin.getline(str,255));

for (fin >> str; strcmp(str,”end(tasks)”); fin >> str) {
TASKS.insert(tsk=str);
fin >> U.add(tsk) >> Sin.add(tsk);
for (Sin(tsk).InitIt(); Sin(tsk).GetNext(state);)
fin >> rho.add(state,tsk);

fin >> Sout.add(tsk);
w=0;
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for (Sout(tsk).InitIt(); Sout(tsk).GetNext(state);) {
fin >> rho.add(tsk,state) >> q;
p.add(tsk,state)=q;
if (q > w)
w=q;

}
dur.add(tsk)=w;
}

// reading states
for (fin.getline(str,255);

strcmp(str,”begin(states)”); fin.getline(str,255));
for (fin >> str; strcmp(str,”end(states)”); fin >> str) {

STATES.add(state=str);
Tin.add(state); Tout.add(state);
fin >> u.add(state) >> z0.add(state)

>> cs.add(state) >> cp.add(state);
}
for (TASKS.InitIt(); TASKS.GetNext(tsk);) {

for (Sin(tsk).InitIt(); Sin(tsk).GetNext(state);)
Tout(state).add(tsk);

for (Sout(tsk).InitIt(); Sout(tsk).GetNext(state);)
Tin(state).add(tsk);

}
// reading units

for (fin.getline(str,255);
strcmp(str,”begin(units)”); fin.getline(str,255));

for (fin >> str; strcmp(str,”end(units)”); fin >> str) {
UNITS.add(unit=str);
fin >> I.add(unit) >> Vmin.add(unit) >> Vmax.add(unit);
}
fin.close();
}

Listing 2.9: Implementation of Cbatch: MIPshell model for MIP (2.6)

int Cbatch::model()
{

INDEX state, tsk, tsk1, unit;
int t,tau, M=H*TASKS.GetSize();
RANGE HORIZON(0,H-1), HORIZON1(0,H);
VAR ARRAY x(”x”,BIN,TASKS,UNITS,HORIZON),

y(”y”,REAL GE,TASKS,UNITS,HORIZON),
z(”z”,REAL GE,STATES,HORIZON1);
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maximize(sum(state in STATES) cp(state)*z(state,H)
- sum(state in STATES, t in [0,H)) cs(state)*z(state,t));

forall(t in [0,H), unit in UNITS)
sum(tsk in I(unit)) x(tsk,unit,t) <= 1;

forall(unit in UNITS, tsk in I(unit), t in [0,H))
sum(tsk1 in I(unit), tau in [t,t+dur(tsk)): tau < H)

x(tsk1,unit,tau) <= 1 + M*(1-x(tsk,unit,t));
forall(unit in UNITS, tsk in I(unit), t in [0,H)) {

Vmin(unit)*x(tsk,unit,t) <= y(tsk,unit,t);
y(tsk,unit,t) <= Vmax(unit)*x(tsk,unit,t);
if (t+dur(tsk) > H) x(tsk,unit,t) == 0;
}
forall(state in STATES, t in [0,H))

z(state,t) <= u(state);
forall(state in STATES)

z0(state) == z(state,0) +
sum(tsk in Tout(state), unit in U(tsk))

rho(state,tsk)*y(tsk,unit,0);
forall(state in STATES, t in [1,H))

z(state,t-1) + sum(tsk in Tin(state), unit in U(tsk): t >= p(tsk,state))
rho(tsk,state)*y(tsk,unit,t -p(tsk,state)) ==

z(state,t) + sum(tsk in Tout(state), unit in U(tsk))
rho(state,tsk)*y(tsk,unit,t);

forall(state in STATES)
z(state,H) == z(state,H-1) +

sum(tsk in Tin(state), unit in U(tsk): H >= p(tsk,state))
rho(tsk,state)*y(tsk,unit,H-p(tsk,state));

optimize();
printSol(y,z);
return 0;
}

Listing 2.10: Implementation of Cbatch: procedure that prints schedules

void Cbatch::printSol(VAR ARRAY& y, VAR ARRAY& z)
{

char fileName[128];
getprobname(fileName);
strcat(fileName,”.sol”);
std::ofstream fout(fileName);
if (!fout.is open()) {

throw new CFileException(”Cbatch::ptintSol”,fileName);
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}

INDEX state, tsk, unit;
int t;

fout << ”Objective = ” << getobj() << ”\nStock: ”;
for (STATES.InitIt(); STATES.GetNext(state);)
fout << getval(z(state,H)) << ” ”;

fout << ”\nSchedule:\n”;
for (UNITS.InitIt(); UNITS’GetNext(unit);) {

fout << unit << ”:\n”;
for (t=0; t < H; ++t)

for (TASKS/InitIt(); TASKS.GetNext(tsk);)
if (getval(y(tsk,unit,t)) > ZERO)
<< ”batch of task ” << tsk << ”: starts at ” << t
<< ”, size = ” << getval(y(tsk,unit,t)) << std::endl;

}
fout.close();

}

Running the program to solve our example process, we get the schedule pre-
sented in Listing 2.11. We see that the maximum profit is 2717.025 units corre-
sponding to the production of 136.0 kg of Product 1 and 147.375 kg of Product 2,
with a residual amount of 89.375 kg of intermediate AB.

Listing 2.11: Schedule for example process

Objective = 2717.03
Stock: 864 898 865.25 0 89.375 0 0 136 147.375
Schedule:
unit 0:
batch of task 0: start at 1, size = 52
batch of task 0: start at 3, size = 32
batch of task 0: start at 7, size = 52
unit 1:
batch of task 1: start at 0, size = 80
batch of task 2: start at 2, size = 80
batch of task 2: start at 4, size = 80
batch of task 1: start at 6, size = 78
batch of task 2: start at 8, size = 80
unit 2:
batch of task 1: start at 0, size = 46
batch of task 2: start at 2, size = 50
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batch of task 3: start at 4, size = 50
batch of task 3: start at 5, size = 13.75
batch of task 3: start at 6, size = 50
batch of task 3: start at 7, size = 50
batch of task 2: start at 8, size = 50
unit 3:
batch of task 4: start at 5, size = 50
batch of task 4: start at 8, size = 113.75
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Chapter 3

Facility Layout

The formats by which departments are arranged in a facility are defined by the gen-
eral pattern of work flow; there are three basic formats — process layout, product
layout, and fixed-position layout — and one hybrid format called group technology
or cellular layout.

A process layout (also called job-shop or functional layout) is a format in which
similar equipment or functions are grouped together, such as lathes in one area and
all stamping machines in another. A part being worked on then travels, according
to the prescribed sequence of operations, from area to area, where the proper ma-
chines are located for each operation. This type of layout is typical, for examples,
for hospitals, where areas dedicated to particular types of medical care, such as
maternity wards and intensive care units.

A product layout (also called flow-shop layout) is one in which equipment or
work processes are arranged according to the progressive steps by which the prod-
uct is made. The path for each part is, in effect, a straight line. Production lines for
shoes, cars, watches, and chemical plants are all product layouts.

A group technology (GT) layout (also called cellular layout) groups dissimilar
machines into work centers (or cells) to work on products that have similar shapes
and processing requirements. A GT layout is similar to process layout in that cells
are designed to perform a specific set of processes, and it is similar to product
layout in that the cells are dedicated to a limited range of products.

In a fixed-position layout, a product (because of its bulk or weight) remains at
one location. Manufacturing equipment is moved to the product rather vice versa.
Shipyards, construction sites are examples of this format.

3.1 Process Layout

The most common approach to developing a process layout is to arrange depart-
ments consisting of like processes in a way that optimizes their relative placement.
In many situations, optimal placement often means placing departments with large
amount of interdepartment traffic adjacent to one another.

Suppose that we want to arrange n departments among m sites to minimize

51
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the cost of moving departments to new places and the interdepartment material
handling cost. Let pis denote the cost of moving department i to site s. Usually,
pis = 0 if department i is currently situated at site s, and pis is a rather big num-
ber (penalty) if department i cannot be moved to site s. Let us also assume that
expected expenses on transporting materials between departments i and j, if they
where situated at sites s and r, are cijsr during a planning horizon (cijsr depends
on the material traffic between the departments as well as the distance between the
sites).

To write an IP model, we introduce two sets of binary variables:

xis = 1 if department i is allocated at site s ∈ Si, and xis = 0 otherwise;

yijsr = 1 only if xis = xjr = 1, and yijsr = 0 otherwise.

With these variables the problem is formulated as follows:

n∑
i=1

m∑
s=1

pisxis +

n−1∑
i=1

n∑
j=i+1

m∑
s=1

m∑
r=1

cijsryijsr → min, (3.1a)

m∑
s=1

xis = 1, i = 1, . . . , n, (3.1b)

n∑
i=1

xis ≤ 1, s = 1, . . . , n, (3.1c)

2yijsr ≤ xis + xjr, s, r = 1, . . . ,m, j = i+ 1, . . . , n, i = 1, . . . , n− 1,
(3.1d)

m∑
s=1

m∑
r=1

yijsr = 1, j = i+ 1, . . . , n, i = 1, . . . , n− 1, (3.1e)

xij ∈ {0, 1}, j = i+ 1, . . . , n, i = 1, . . . , n− 1, (3.1f)

yijsr ∈ {0, 1}, s, r = 1, . . . ,m, j = i+ 1, . . . , n, i = 1, . . . , n− 1. (3.1g)

The objective (3.1a) is to minimize the total expenses on moving the depart-
ments and the expenses on transporting materials between the all departments. The
equations (3.1b) require that each department be moved to exactly one site, and the
equations (3.1c) do not allow two departments to share one site. The inequalities
(3.1d) and (3.1e) impose the required relation between the x an y variables (see
definition of yijsr).

3.1.1 MIPshell-implementation

We implemented the process layout problem as a C++ class Cproclayout which
definition is presented in Listing 3.1.
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Listing 3.1: MIPshell Class Cproclayout: definition

#include <mipshell.h>

class Cproclayout: public CProblem
{

int m iN, m iM;
int *m ipMovingCost, *m ipDist, *m ipFlow;

public:
Cproclayout(const char *name);

#ifdef THREADS
Cproclayout(const Cproclayout &other, int thread);
CMIP* clone(const CMIP *pMip, int thread);

#endif
virtual ∼Cproclayout();

int model();

void readData(const char *fileName);
void printSol(VAR VECTOR &x);

int c(int i, int j, int s, int r);
int p(int i, int s) return m ipMovingCost[i*m iM+s];
};

Cproclayout has the following members for storing problem instances:

• m iN: number of departments;

• m iM: number of sites;

• m ipMovingCost: integer array of size m iN·m iM, where m ipMovingCost[i,s]
is cost of moving department i to site s;

• m ipDist: integer array of size m iM(m iM-1)/2 to store upper triangle of
distance matrix;

• m ipFlow: integer array of size m iN(m iN-1)/2 to store upper triangle of
interdepartment material-flow matrix.

The default constructor of Cproclayout

Cproclayout(const char *name)

gets as its input parameter the name of a text file (without extension .txt) de-
scribing an instance of the process layout problem, and then calls
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void readData(const char *fileName)

to read the instance.
A MIPshell implementation of IP (3.1) is given in Listing 3.2. In place of the

standard printsol procedure we use a printSol procedure that prints the solution
found in a more readable way.

Listing 3.2: Process layout MIPshell model

int Cproclayout::model()
{

int i,j,s,r, n=m iN, m=m iM;
VAR VECTOR x(”x”,BIN,n,m), y(”y”,BIN,n,n,m,m);

minimize(sum(i in [0,n), s in [0,m)) p(i,s)*x(i,s) +
sum(i in [0,n-1), j in [i+1,n), s in [0,m), r in [0,m)) c(i,j,s,r)*y(i,j,s,r));

forall(i in [0,n))
sum(s in [0,m)) x(i,s) == 1;

forall(s in [0,m))
sum(i in [0,n)) x(i,s) <= 1;

forall(i in [0,n-1), j in [i+1,n))
sum(s in [0,m), r in [0,m)) y(i,j,s,r) == 1;

forall(i in [0,n-1), j in [i+1,n), s in [0,m), r in [0,m))
2*y(i,j,s,r) - x(i,s) - x(j,r) <= 0;

optimize();
printSol(x);
return 0;

}

3.1.2 Illustrative Example

Consider a low-volume toy factory with eight departments:

1) shipping and receiving,

2) sewing,

3) metal forming,

4) plastic molding and stamping,
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Figure 3.1: Plan of factory building and initial arrangement

Table 3.1: Flows between departments

2 3 4 5 6 7 8
1 0 60 150 40 180 30 20
2 20 100 20 7 23 0
3 0 90 125 178 98
4 75 90 95 80
5 0 182 162
6 115 325
7 8

5) small toy assembly,

6) large toy assembly,

7) mechanism assembly,

8) painting.

Suppose that we want to arrange these eight departments of a toy factory to mini-
mize the total cost of moving departments to new locations and the interdepartment
material handling cost during planning horizon of 5 years.

To make presentation clearer, let us make some simplifying assumptions. The
factory building has 8 rooms of equal size, 10 m wide and 10 m long, that are
arranged as in Figure 3.1 a). Initially department i is allocated in room i (i =
1, . . . , 8). The cost of moving any department to a new location is $200. Therefore,
moving costs are defined by the rule: pii = 0, and pis = 200 for i 6= s.

All materials are transported in a standard-size crate by a forklift truck, one
crate to a truck. Suppose that transportation costs are $1 to move one crate be-
tween adjacent departments and $1 extra for each department in between. The
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expected material flows between departments for one year of operation are given
in Table 3.1.

The per year interdepartment material handling cost for the initial arrangement
of departments is calculated as follows:

0 · 1 + 60 · 1 + 150 · 2 + 40 · 2 + 180 · 3 + 30 · 3 + 20 · 4
+ 20 · 2 + 100 · 1 + 20 · 3 + 7 · 2 + 23 · 4 + 0 · 3

+ 0 · 1 + 90 · 1 + 125 · 1 + 178 · 2 + 98 · 3
+ 75 · 2 + 90 · 1 + 95 · 3 + 80 · 2

+ 0 · 1 + 182 · 1 + 162 · 2
+ 115 · 2 + 325 · 1

+ 8 · 1 = 4075.

Thus, the material handling cost during the planning horizon is 5·$4075 = $20375.
To solve this instance of the process layout problem, we described it in a text

file (named test1.txt) whose contest is presented in Listing 3.3.

Listing 3.3: Input file for process layout program

8 8

0 200 200 200 200 200 200 200
200 0 200 200 200 200 200 200
200 200 0 200 200 200 200 200
200 200 200 0 200 200 200 200
200 200 200 200 0 200 200 200
200 200 200 200 200 0 200 200
200 200 200 200 200 200 0 200
200 200 200 200 200 200 200 0

1 1 2 2 3 3 4
2 1 3 2 4 3

1 1 2 2 3
2 1 3 2

1 1 2
2 1

1

0 300 750 200 900 150 100
100 500 100 35 115 0

0 450 625 890 490
375 450 475 400

0 910 840
575 1625

40
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To solve our instance, we first enter the directory tests where test1.txt
is stored, and then enter the command

../bin/proclayout test1

to get in tests the text file named test1.sol with the content as that in
Listig 3.4.

Listing 3.4: Solution for process-layout example

Total expenses: 18500
i => s means that department i moves to site s

1 => 1
2 => 2
3 => 7
4 => 4
5 => 6
6 => 3
7 => 8
8 => 5

We see that, if the factory reallocates its departments as it is prescribed in
Listing 3.4, it will profit 20375 − 18500 = $1875 during the planning horizon of
five years.

3.2 Balancing Assembly Lines

Assembly lines are special product-layout production systems that are typical for
the industrial production of high quantity standardized commodities. An assembly
line consists of a number of work stations arranged along a conveyor belt. The work
pieces are consecutively launched down the conveyor belt and are moved from one
station to the next. At each station, one or several tasks necessary to manufacture
the product are performed. The tasks in an assembly process are typically ordered,
i.e. there may be precedence requirements that must be enforced. The problem of
distributing the tasks among the stations with respect to some objective function is
called the assembly line balancing problem (ALBP). Various classes of assembly
line balancing problems have been studied in the literature1. We will consider
here the simple assembly line balancing problem which is the core of many other
ALBP’s.

1A. Scholl. Balancing and sequencing of assembly lines, Heidelberg: Physica-Verlag, 1999.
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Figure 3.2: Example of SALBP

The manufacturing of some product consists of a set of tasks T = {1, . . . , n}.
We denote by tj the processing time of task j ∈ T . There is a precedence relation
on the tasks that are represented by a digraph G = (T , E), where (j1, j2) ∈ E
means that task j1 is an immediate predecessor of task j2. Suppose that the demand
for the product is such that the assembly line must have a cycle time C. Thus the
running time of each station must not exceed the cycle time.

The simple assembly line balancing problem (SALBP) is to decide what is the
minimum number of stations that is enough for the line running with the given
cycle time to fulfill all the operations in an order consistent with the precedence
relation.

An example of SALBP is presented in Figure 3.2. Here vertices represent
operations, and number over vertices are operation processing times.

To formulate SALBP as an IP, we need to know an upper bound, m, of the
number of needed stations. In particular, we can set m to be the the number of
station in a solution build by one of the heuristics developed for solving SALBPs.

For example, let us consider the heuristic that assigns operations, respecting
precedence relations, first to Station 1, then to Station 2, and so on until all the
operations have been assigned to the stations. If we apply this heuristic to the
example of Figure 3.2 when the cycling time is C = 45, we get the following
assignment:

• operations 1 and 2 are accomplished by Station 1,

• operations 3, 4, 5, and 6 — by Station 2,

• operations 7, 8, and 9 — by Station 3,

• operations 10 and 11 — by Station 4.

So in this example we can set m = 4.
Let us also note that this heuristic solution is not optimal as there exists an

assignment that uses only three stations:
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• operations 1, 3, 5, and 6 are accomplished by Station 1,

• operations 2, 4, and 7 — by Station 2,

• operations 8, 9, 10, and 11 — by Station 3.

We introduce the following variables:

yi = 1 if station i is open (used), yi = 0 otherwise;

xij if task j is assigned to station i, xij = 0 otherwise;

zj = i if task j is assigned to station i.

With these variables the model is
m∑
i=1

yi → min (3.2a)

m∑
i=1

xij = 1, j = 1, . . . , n, (3.2b)

n∑
j=1

tjxij ≤ Cyi, i = 1, . . . ,m, (3.2c)

m∑
i=1

i xij = zj , j = 1, . . . , n, (3.2d)

zj1 ≤ zj2 , (j1, j2) ∈ E, (3.2e)

yi−1 ≥ yi, i = 2, . . . ,m, (3.2f)

xij ≤ yi, j = 1, . . . , n; i = 1, . . . ,m, (3.2g)

xij ∈ {0, 1}, i = 1, . . . ,m; j = 1, . . . , n, (3.2h)

yi ∈ {0, 1}, i = 1, . . . ,m, (3.2i)

zj ∈ R+, j = 1, . . . , n. (3.2j)

The objective (3.2a) is to minimize the number of open stations. The constraints
(3.2b) induce that each task is assign to exactly one station. The capacity con-
straints (3.2c) enforce that the total running time of each open stations does not
exceed the cycle time. The constraints (3.2d) establish the relation between the
assignment variables, binary x and integer z. The precedence relation constraints
(3.2e) induce that, for any pair (j1, j2) ∈ E of related tasks, task j1 is assigned to
the same or an earlier station than task j2; this guaranties that task j1 can be pro-
cessed before task j2 starts. The constraints (3.2f) and (3.2g) enforce that earlier
stations are opened first.

To solve SALBPs, we developed a C++ class Cassembly which has the fol-
lowing members for storing problem instances:

• m iOpNum: number of operations;
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• m iStNum: number of stations;

• m iRewlNum: number of precedence relations;

• m iCycleTime: cycle time;

• m ipTime: integer array of size m iOpNum, where m ipTime[j] is processing
time of operation j;

• m ipPrec and m ipSucc: integer arrays of size m iRelNum, where operation
m ipPrec[i] precedes operation m ipSucc[i].

The default constructor of Cassembly

Cassembly(const char *name)

gets as its input parameter the name of a text file (without extension .txt) de-
scribing an instance of SABL, and then calls

void readData(const char *fileName)

to read the instance.
A straightforward MIPshell implementation of IP (3.2) is given in Listing 3.5.

In place of the standard printsol procedure we use a printSol procedure that prints
the solution found in a more readable way.

Listing 3.5: MIPshell line balancing procedure

#define prec(e) m ipPrec[e]
#define succ(e) m ipSucc[e]
#define t(j) m ipTime[j]

void Cassembly::model()
{

int i,j, m=m iStNum, n=m iOpNum, q=m iRelNum, C=m iCycleTime;
VAR VECTOR x(”x”,BIN,m,n), y(”y”,BIN,m), z(”z”,REAL GE,n);

minimize(sum(i in [0,m)) y(i));
forall(j in [0,n)) {

sum(i in [0,m)) x(i,j) == 1;
sum(i in [0,m)) (i+1)*x(i,j) == z(j);

}
forall(i in [0,m)) {

sum(j in [0,n)) t(j)* x(i,j) <= C*y(i);
forall(j in [0,n))

x(i,j) <= y(i);
}
forall(i in [0,q))
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z(prec(i)) <= z(succ(i));
forall(i in [1,m))

y(i-1) >= y(i);
optimize();
printSol(x);
}
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Chapter 4

Service Management

Most authorities consider services as economic activities whose output is not a
physical product but a time-perishable, intangible process performed to a customer
acting in the role of co-producer (James Fitzsimmons). In services, location of the
service facility and direct customer involvement in creating the output are often
essential factors while in goods production they usually are not. Measuring service
productivity also has its own specifics.

4.1 Service Facility Location

The problem of facility location is critical to a company’s eventual success. Service
companies’ location decisions are guided by variety of criteria. A location close to
the customer is especially important because this enables faster delivery goods and
services.

Given a set of customer locations N = {1, . . . , n} with bj customers at loca-
tion j ∈ N , a set of potential sites M = {1, . . . ,m} for locating depots, a fixed
cost fi of locating a depot at site i, a capacity ai of the depot at site i, and a cost
cij of serving customer j from site i during some planning horizon. The facility
location problem (FLP) is to decide where to locate depots so that to minimize the
total cost of locating depots and serving customers.

Choosing the following decision variables

yi = 1 if depot is located at site i and yi = 0 otherwise,

xij : number of cuctomers of location j served from depot established at
site i,

63
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we formulate the problem as follows:

m∑
i=1

n∑
j=1

cijxij +
m∑
i=1

fiyi → min (4.1a)

m∑
i=1

xij = bj , j = 1, . . . , n, (4.1b)

n∑
j=1

xij ≤ aiyi, i = 1, . . . ,m. (4.1c)

xij ≤ min{ai, bj}yi, i = 1, . . . ,m, j = 1, . . . , n, (4.1d)

yi ∈ {0, 1}, i = 1, . . . ,m, (4.1e)

xij ∈ Z+, i = 1, . . . ,m, j = 1, . . . , n. (4.1f)

The constraints (4.1b) insure that each customer is served. The capacity con-
straints (4.1c) induce that at most ai customers can be served from site i. The
redundant constraints (4.1d) are implied by the capacity constraints. They were
introduced to strengthen the IP formulation.

Let us note, that if all cij = 0 and all fi = 1, then problem (4.1) is to minimize
the number of depots needed to serve all customers.

4.1.1 MIPshell Implementation

A MIPshell application for solving FLP’s is located in the following folder

$MIPDIR/examples/mipshell/fl.

The core of this application is a C++ class Cfl. Its members for storing problem
instances are:

• m iLocationNum: number of locations;

• m iSiteNum: number of potential sites for locating depots;

• m iQ: maximum number of depots;

• m ipPopulation: integer array of size m iLocationNum, where m ipPopula-
tion[j] is number of customers at location j;

• m ipFixedCost: integer array of size m iPlaceNum, where m ipFixedCost[i]
is fixed cost of locating depot at site i;

• m ipCapacity: integer array of size m iPlaceNum, where m ipCapacity[i] is
capacity of depotif it is allocated at site i;

• m ipCost: integer array of size m iPlaceNum×m iCustomNum, where m ipCost[i,j]
is cost of serving customer j from depot i;
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The default constructor of Cfl

Cfl(const char *name)

just calls the function

void readData(const char *fileName)

to read a text file which name (without extension ”.txt”) is given by the parameter
fileName. The data read from the file is stored in the class members described
above. The function also allocates memory for the array members of Cfl.

A straightforward MIPshell implementation of the IP (4.1) is presented in List-
ing 4.1.

Listing 4.1: MIPshell model for facility location problem

#define f(i) m ipFixedCost[i]
#define a(i) m ipCapacity[i]
#define b(j) m ipPopulation[j]
#define c(i,j) m ipCost[i*n+j]
#define min(a,b) ((a ¡ b)? a: b)
int Cfl::model()
{

int i,j, m=m iSiteNum, n=m iLocationNum, q=m iQ;
VAR VECTOR y(”y”,BIN,m), x(”x”,INT GE,m,n);

minimize(sum(i in [0,m)) f(i)*y(i) + sum(i in [0,m), j in [0,n)) c(i,j)*x(i,j));
forall(j in [0,n))

sum(i in [0,m)) x(i,j) == b(j);
forall(i in [0,m))

sum(j in [0,n)) x(i,j) <= b(i)*y(i);
forall(i in [0,m), j in [0,n))

x(i,j) <= min(a(i),b(j))*y(i);

optimize();
printSol(x,y);
return 0;
}

4.1.2 Locating Two medical Clinics

Two clinics, both of capacity 40, are to be established to provide medical care for
people living in four communities, A, B, C, D and E. The population of each com-
munity and distances between communities are given in Table 4.1. Assume that
clinics can be allocated at any of the communities with the same expenses (so we
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Table 4.1: Population and distances between communities

Com- Distance to (km) Population
munity A B C D E (thousands)

A 0 11 8 12 15 10
B 11 0 10 7 13 8
C 8 10 0 9 9 20
D 12 7 9 0 6 12
E 15 13 9 6 0 14

may assume that the fixed costs of allocating clinics are zeroes), and the population
of each community is evenly distributed within the community’s boundaries. The
problem is to allocate two clinics so that to minimize the overall travel distance.

To solve this example with our program, we prepared a text file, named test1.txt,
which contents is as the following.

5 5 2

10 8 20 12 14

0 40 0 40 0 40 0 40 0 40

0 11 8 12 15
11 0 10 7 13
8 10 0 9 9

12 7 9 0 6
15 13 9 6 0

If you enter the folder $MIPDIR/examples/mipshell/fl/tests and
run the program flwith the only parameter test1.txt, you will get the solution
written into the text file test1.sol.

Overall travel distance is 220
===== Facility at site 3 serves customers:
10 from loc. 1
20 from loc. 3
=============================================
===== Facility at site 4 serves customers:
8 from loc. 2
12 from loc. 4
14 from loc. 5
=============================================
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4.1.3 Location Of Automated Teller Machines

A number of variations of the base facility location problem (4.1) are known. In
this section we consider one of such variations.

A bank is planning to serve n rural communities with automated teller ma-
chines (ATMs). Let bj be the population of community j, and let tij be the travel
time in minutes between communities i and j. The bank wants to place the min-
imum number of ATMs so that at least p percent of customers will be within T
minutes’ travel time of the nearest ATMs.

Setting tmax def
= max1≤i,j≤n tij and introducing the following decision vari-

ables

yi = 1 if ATM is installed at community i, and yi = 0 otherwise,

xij = 1 if community j is served by ATM installed at community i,

zj = 1 if some ATM is within T minutes’ travel time of community j, and
zj = 0 otherwise,

we formulate the problem as follows:

n∑
i=1

yi → min (4.2a)

n∑
i=1

xij = 1, j = 1, . . . , n, (4.2b)

xij ≤ yi, i, j = 1, . . . , n, (4.2c)
n∑
i=1

tijxij + tmaxzj ≤ T + tmax, j = 1, . . . , n, (4.2d)

n∑
j=1

bjzj ≥ (p/100)

n∑
j=1

bj , (4.2e)

yi ∈ {0, 1}, i = 1, . . . , n, (4.2f)

xij ∈ {0, 1}, i, j = 1, . . . , n, (4.2g)

zj ∈ {0, 1}, j = 1, . . . , n. (4.2h)

The objective (4.2a) is to minimize the number of ATMs installed. The con-
straints (4.1b) insure that each community is served by exactly one ATM. The
constraints (4.2c) do not allow customers to be served from those sites where no
ATM is installed. Inequality j in (4.2d) is a restriction only if zj = 1, and then
community j is within T minutes’ travel time of an ATM. The inequality (4.2e)
that at least p percent of customers are within T minutes’ travel time of an ATM.

It will be a good exercise if you write a MIPshell-program that solves the IP
(4.2).
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4.2 Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a technique used to measure the relative per-
formance of branches of multisite service organizations such as banks, public agen-
cies, fast food services, and many others. DEA provides a more comprehensive
and reliable measure of efficiency than any measure composed of a set of operat-
ing ratios or profit measures. A DEA model compares each branch with all other
branches and computes an efficiency rating that is the ratio of weighted product or
service outputs to weighted resource inputs. A branch is deemed to be efficient if
it is not possible to find a mixture of proportions of other branches whose com-
bined inputs do not exceed those of the branch being estimated, but whose outputs
are equal to, or exceed, those of the branch being estimated. Should this not be
possible the branch is deemed to be inefficient and the comparator branches can be
identified. The key advantage is that DEA permits using multiple inputs such as
materials and labor hours, and multiple outputs such as products sold and repeat
customers.

Let us assume that there are n service units which are numbered as 1, . . . , n.
For one time period, service unit i (i = 1, . . . , n) used rij units of resource j
(j = 1, . . . ,m), and provided sik services of type k (k = 1, . . . , l). The efficiency
of unit i is estimated by the ratio

Ei(u, v)
def
=

∑l
k=1 sikuk∑m
j=1 rijvj

,

where uk and vj are weights to be determined by the DEA model.
The rating of service unit i0 is computed by solving the following problem of

fractional linear programming:

max{Ei0(u, v) : Ei(u, v) ≤ 1, i = 1, . . . , n; i 6= i0; u ∈ Rl+, v ∈ Rm+}.

This problem can be reformulated as the folloving LP:

l∑
k=1

si0kuk → max, (4.3a)

m∑
j=1

ri0jvj = 1, (4.3b)

l∑
k=1

sikuk ≤
m∑
j=1

rijvj , i = 1, . . . , n; i 6= i0 (4.3c)

uk ≥ 0, k = 1, . . . , l, (4.3d)

vj ≥ 0, j = 1, . . . ,m. (4.3e)
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Table 4.2: Data for DEA analysis

Service Labour Material Meals
unit (hours) (dollars) sold

1 32 3200 1600
2 16 600 400
3 24 600 600
4 24 400 400
5 16 160 200
6 8 40 80

Let (u∗, v∗) be an optimal solution to problem (4.3). If Ei0(u∗, v∗) < 1, then
service unit i0 worked inefficiently, and the unit can improve its efficiency by using
some experience of more efficient units i for which Ei(u∗, v∗) = 1.

To demonstrate, let us consider a small example. A firm established six units
each located in strip shopping center parking lot. Only a standard meal consisting
of a burger, fries, and a drink is sold in each unit. Management has decided to use
DEA to improve productivity by identifying which units are using their resources
most efficiently. Table 4.2 presents data for DEA analysis.

To compute the rating of Firm 1, we formulate the following LP:

E1 = 1600u1 → max,

32v1 − 3200v2 = 1,

400u1 − 16v1 − 600v2 ≤ 0,

600u1 − 24v1 − 600v2 ≤ 0,

400u1 − 24v1 − 400v2 ≤ 0,

200u1 − 16v1 − 160v2 ≤ 0,

80u1 − 8v1 − 40v2 ≤ 0,

u1, v1, v2 ≥ 0.

4.2.1 MIPshell implementation

To compute the ratings for all n firms, we need to solve n LPs of type (4.3). There-
fore, our MIPshell implementation of the DEA problem somewhat differs from
most other applications in this manual. To solve one particular LP (4.3), we de-
veloped a C++ class named Cdea. Its definition is given in Listing 4.2. But now
this class do not allocate memory for storing input data; instead Cdea has only a
pointer to an array with input parameters rij and sik:
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• m iUnitNum: number of service units (n);

• m iResNum: number of resources (m);

• m iServiceNum: number of services provided (l);

• m dpInOut: real array of size n× (m + l), where m dpInOut[i*(m+l)+j] stores
r(i,j), andm dpInOut[i*(m+l)+m+k] stores s(i,k).

Listing 4.2: Class Cdea

#include <mipshell.h>

class Cdea: public CProblem
{

int m iUnitNum, m iResNum, m iServiceNum;
double *m dpInOut; // only pointer

public:
Cdea(const char *name, int unitNum, int resNum, int serviceNum,

double *dpInOut);
#ifdef THREADS

Cdea(const Cdea &other, int thread);
CMIP* clone(const CMIP *pMip, int thread);

#endif
virtual Cdea();

int model(int i0, double &rating,
double *dpV, double *dpU, double *dpS, double *dpRes);

};

In Cdea, the standard declaration of model was changed to the following

int model(int i0, double &rating,
double *dpV, double *dpU, double *dpS, double *dpRes),

where

• i0: service unit to be estimated;

• rating: rating of unit i0 (output parameter);

• dpV: output real array of size m iResNum, where dpV[j] is weight of resource
j (vj);

• dpU: output real array of size m iServiceNum, where dpU[k] is weight of
output k (uk);
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• dpS, dpR: output real arrays of size m iUnitNum, where dpS[i] and dpR[i]
are, respectively, combined output and input for weights u and v that are
optimal for unit i0.

Our implementation of model is presented in Listing 4.3. We first formulate LP
(4.3), and then, when the LP has been solved (after calling optimize), we compute
the value of the output parameters, rating, dpS, and dpR.

Listing 4.3: MIPshell model for DEA

#define s(i,k) m dpInOut[i*(m+l)+m+k]
#define r(i,j) m dpInOut[i*(m+l)+j]

int Cdea::model(int i0, double &rating,
double *dpV, double *dpU, double *dpR, double *dpS)

{
int i,j,k, n=m iUnitNum, m=m iResNum, l=m iServiceNum;
VAR VECTOR u(”u”,REAL GE,l), v(”v”,REAL GE,m);

maximize(sum(k in [0,l)) s(i0,k)*u(k));

sum(j in [0,m)) r(i0,j)*v(j) == 1;

forall(i in [0,n): i != i0)
sum(k in [0,l)) s(i,k)*u(k) <= sum(j in [0,m)) r(i,j)*v(j);

optimize();

// preparing the output
rating=getobj();
forall(k in [0,l))

dpU[k]=getval(u(k));
forall(j in [0,m))

dpV[j]=getval(v(j));

forall(i in [0,n)) {
dpS[i]=dpR[i]=0.0;
forall(k in [0,l))

dpS[i]+=s(i,k)*dpU[k];
forall(j in [0,m))

dpR[i]+=r(i,j)*dpV[j];
}

return 0;
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} // end of Cdea::model

Unlike most of the other applications in this manual, a part of functionality
of the DEA application is implemented outside of its base class. Here, two func-
tions, readData and solveAll, are called from the application main function (see
Listing 4.4). The former function, readData, — which implementation is straight-
forward and, therefore, is not presented here — reads problem instances from a text
file which name is passed as the first function argument. The other arguments are
output parameters which meanings are the same as the meanings of the same name
(but without suffix ”m ”) members of Cdea. The function readData also allocates
memory for the array dpInOut that stores parameters sik and rij .

Listing 4.4: Implementation of DEA: function main

int main(int argc, const char *argv[])
{

if (argc < 2) {
std::cerr << ”Enter file name!\n”;
return 1;
}

int unitNum, resNum, serviceNum;
double *dpInOut=0;

try {
readData(argv[1],unitNum,resNum,serviceNum,dpInOut);
solveAll(argv[1],unitNum,resNum,serviceNum,dpInOut);
}
catch(CException* pe) {

std::cerr << pe->GetErrorMessage() << std::endl;
delete pe;
return 1;
}
if (dpInOut)

delete[] dpInOut;

return 0;
}

The function solveAll from Listing 4.5, n times calls model to compute the
ratings of all n service units. This function also calls the function printSol,—
which implementation is straightforward and, therefore, is not presented here —
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that writes units ratings and relative information to a text file, which name is the
problem name appended with the extension ”.sol”.

Listing 4.5: Implementation of DEA: function solveAll

void solveAll(const char *probName,
int unitNum, int resNum, int serviceNum, double *dpInOut)

{
double rating, *dpR, *dpS, *dpU, *dpV;
if (!(dpR = new(std::nothrow) double[2*unitNum+ resNum+serviceNum])) {

throw CMemoryException(”solveAll (1)”);
}
dpU=(dpV=(dpS=dpR+unitNum)+unitNum)+resNum;
char fileName[128];
strcpy(fileName,probName);
strcat(fileName,”.sol”);
std::ofstream fout(fileName);
if (!fout.is open()) {

throw new CFileException(”solveAll”,fileName);
}

Cdea *pDea;
int n=unitNum;
for (int i=0; i < n; ++i) {

if (!(pDea=new Cdea(probName,unitNum, resNum,serviceNum,
dpInOut))) {

fout.close();
delete[] dpR;
throw CMemoryException(”solveAll (2)”);
}
pDea->model(i,rating,dpV,dpU,dpR,dpS);
printSol(fout,i,unitNum,resNum,serviceNum, rating,dpV,dpU,dpS,dpR);
delete pDea;
}

fout.close();
delete[] dpR;
} // end of solveAll

4.2.2 Example

A car manufacturer wants to evaluate the efficiencies of different garages who have
received a franchise to sell its cars. The inputs are: staff, showroom space, catch-
ment population in different economic categories, and inquiries for different brands
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Table 4.3: Inputs and outputs of franchised garages

Inputs Outputs
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1 3 3.6 3 3 2.5 1.5 0.8 0.2 0.45
2 6 7.5 10 10 7.5 4 1.5 0.45 0.45
3 7 6 5 7 8.5 4.5 1.2 0.48 2
4 7 8 7 8 3 2 1.9 0.7 0.5
5 14 9 20 25 10 6 2.6 0.86 1.9
6 10 9 10 10 11 5 2.4 1 2
7 3 3.5 3 20 2 1.5 0.9 0.35 0.5
8 12 8 7 10 12 7 4.5 2 2.3
9 5 5 10 10 5 2.5 2 0.65 0.9

10 8 10 30 35 9.5 4.5 2.05 0.75 1.7
11 2 3 40 40 2 1.5 0.8 0.25 0.5
12 5 6.5 9 12 8 4.5 1.8 0.63 1.4
13 7 8 10 12 8.5 4 2 0.6 1.5
14 11 8 8 10 10 6 2.2 0.65 2.2
15 4 5 10 10 7.5 3.5 1.8 0.62 1.6
16 24 15 15 13 25 1.9 8 2.6 4.5
17 30 29 120 80 35 20 7 2.5 8
18 4 6 1 1 7.5 3.5 1.1 0.45 1.7
19 6 5.5 2 2 8 5 1.5 0.55 1.55
20 8 7.5 5 8 9 4 2.1 0.85 2
21 5 5.5 8 10 7 3.5 1.2 0.45 1.3
22 25 16 110 80 27 12 6.5 3.5 5.4
23 19 10 90 22 25 13 5.5 3.1 4.5
24 6 6 20 30 9 4.5 2.3 0.7 1.6
25 6 7 50 40 8.5 3 2.5 0.9 1.6
26 21 12 6 6 15 8 6 0.25 2.9

of car. The outputs are: number sold of different brands of car and annual profit.
Table 4.3 gives the inputs and outputs for each of the 26 franchised garages.

To solve this example, we move data from Table 4.3 to a text file garage.txt
in the directory

$MIPDIR/examples/mipshell/dea/test,

then we enter this directory and solve the example with the command
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../bin/dea garage.txt

Efficiency ratings and other information is written to the output file garage.sol
which is too long to be presented here. Therefore, Listing 4.6 exibits only its initial
part, describing unit 1.

We see that unit 1 with DEA rating of 0.888808 works inefficiently. Five
units, 4,7,8,20, and 26, are more efficient than unit 1, and management can suggest
changes to improve productivity of unit 1 based on experience of units 4,7,8,20,
and 26.

Listing 4.6: Implementation of DEA: function solveAll

=> Unit 1 of rating 0.888808
v=(0.0180558,0,0,0.0105713,0.365648,0)
u=(0.29444,0.0473597,1.43063)
+-------------------------------------+
| Unit | Relative | Weighted sum of |
| | rating | inputs | outputs |
+-------------------------------------+
| 1 | 0.8888 | 1 | 0.8888 |
| 2 | 0.3744 | 2.956 | 1.107 |
| 3 | 0.9785 | 3.308 | 3.237 |
| 4 | 1 | 1.308 | 1.308 |
| 5 | 0.8445 | 4.174 | 3.524 |
| 6 | 0.8391 | 4.308 | 3.615 |
| 7 | 1 | 0.9969 | 0.9969 |
| 8 | 1 | 4.71 | 4.71 |
| 9 | 0.9422 | 2.024 | 1.907 |
| 10 | 0.7701 | 3.988 | 3.071 |
| 11 | 0.8088 | 1.19 | 0.9627 |
| 12 | 0.8155 | 3.142 | 2.563 |
| 13 | 0.8221 | 3.361 | 2.763 |
| 14 | 0.966 | 3.961 | 3.826 |
| 15 | 0.9754 | 2.92 | 2.848 |
| 16 | 0.9181 | 9.712 | 8.916 |
| 17 | 0.9605 | 14.19 | 13.62 |
| 18 | 0.9831 | 2.825 | 2.777 |
| 19 | 0.879 | 3.055 | 2.685 |
| 20 | 1 | 3.52 | 3.52 |
| 21 | 0.8109 | 2.756 | 2.234 |
| 22 | 0.8778 | 11.17 | 9.805 |
| 23 | 0.8443 | 9.717 | 8.204 |
| 24 | 0.8071 | 3.716 | 2.999 |
| 25 | 0.843 | 3.639 | 3.068 |
| 26 | 1 | 5.927 | 5.927 |



76 Chapter 4. Service Management

+-------------------------------------+

4.3 Yield management

Yield management is an approach to revenue maximization for service firms that
exhibit the following characteristics:

1. Relatively fixed capacity. Service firms with substantial investment in facili-
ties (e.g., hotels and airlines) are capacity-constrained (once all the seats on
a flight are sold, further demand can be met only by booking passengers on
a later flight).

2. Ability to segment its market into different customer classes. Developing var-
ious price-sensitive classes of service gives firms more flexibility in different
seasons of the year.

3. Perishable inventory. Revenue from an unsold seat in a plane or from unsold
room in a hotel is lost forever.

4. Reservation systems are adopted by service firms to sell capacity in advance
of use. However, managers are faced with uncertainty of whether to accept
an early reservation at a discount price or to wait in hope to sell later seats or
rooms to higher-paying customers.

5. Fluctuating demand. To sell more seats or rooms and increase revenue, in
periods of slow demand managers can lower prices, while in periods of high
demands prices are getting higher.

4.3.1 Yield Management In Airline Industry

Now let us turn to setting of a concrete problem. An airline starts selling tickets for
flights to a particular destination D days before the departure. The time horizon of
D days are divided into T periods of unequal length (for example, a time horizon
of D = 60 days can be divided into T = 4 periods of length 30, 20, 7 and 3 days).
It can be used up to sk planes of type k each costing fk to hire, k = 1, . . . ,K. Each
plane of type k has q1k first class seats (referred to as class 1 in the following), q2k

business class seats (class 2), and q3k economy class seats (class 3. Up to ri percent
of seats of class i can be transformed into seats of adjacent categories, i = 1, 2, 3.

For administrative simplicity, in each period t (t = 1, . . . , T ) only O price
options can be used, and let ctio denote the price of a seat of class i (i = 1, 2, 3) in
period t if option o is used.

Demand is uncertain but is affected by price. Let us assume that S scenarios
are possible in each period. Forecasts have been made for these demands for each
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scenario in each of T periods. The probability of scenario s (1 ≤ s ≤ S) in period
T is pts,

∑S
s=1 pts = 1. If scenario s happens in period t, and price option o is

used in this period, then the demand for seats of class i will be dtsio.
We have to decide for each of T periods, price levels, how many seats to sell in

each class (depending on demand) to maximize expected yield.

4.3.2 Mip Model

To write a deterministic model for this stochastic problem, we need to describe a
scenario tree. In this application the scenario tree has n+ 1 =

∑T
t=0 S

t nodes. Let
us denote by Vt the set of St nodes in level t, t = 0, 1, . . . , T . Let us also assume
that the root of the scenario tree is indexed by 0, and then V0 = {0}.

Each node j ∈ Vt (t = 1, . . . , T ) corresponds to one of the situations that may
happen after t periods, and is characterized by a sequence of integers (s1, s2, . . . , st),
where sτ ∈ {1, . . . , Sτ} is an index of a scenario for period τ . The situation of

node j ∈ Vt happens with probability p̄j
def
=
∏t
τ=1 pτ,sτ and, if price option o is

used, the demand for seats of class i is d̄jio
def
= dt,st,i,o, and their price is ctio. Let

us define c̄jio
def
= p̄jctio. The parent of node j, denoted by parent(j), is that node

in Vt−1 which is characterized by the sequence (s1, s2, . . . , st−1). Note, that the
root node 0 is the parent of all nodes in V1 (of level 1).

Now we define the variables. Let vk denote number of planes of type k used.
With each node j ∈ V \ VT we associate the following variables:

xjio: number of seats of class i to be sold in period t using price option o,
when situation of node j will happen;

yjio = 1 if price option o is used for class i when situation of node j will
happen, and yjio = 0 otherwise.

Each node j ∈ V is associated with the variables:

zji: number of seats of class i to be sold until situation of node j will happen.

Now we can write the following deterministic model:

−
K∑
k=1

fkvk +
∑

j∈V \VT

O∑
o=1

3∑
i=1

c̄jioxjio → max, (4.4a)

O∑
o=1

yjio = 1, j ∈ V \ VT , i = 1, 2, 3, (4.4b)

xjio ≤ d̄jioyjio, j ∈ V \ VT , i = 1, 2, 3, o = 1, . . . , O, (4.4c)

zji = zparent(j),i +

O∑
o=1

xparent(j),i,o , j ∈ V \ {0}, i = 1, 2, 3, (4.4d)
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zj1 ≤
K∑
k=1

(q1k + br2kq2k/100c) vk, j ∈ VT , (4.4e)

zj2 ≤
K∑
k=1

(q2k + b(r1kq1k + r3kq3k)/100c) vk, j ∈ VT , (4.4f)

zj3 ≤
K∑
k=1

(q3k + br2kq2k/100c) vk, j ∈ VT , (4.4g)

zj1 + zj3 ≤
K∑
k=1

(q1k + q3k + br2kq2k/100c) vk, j ∈ VT , (4.4h)

zj1 + zj2 + zj3 ≤
K∑
k=1

(q1k + q2k + q3k) vk, j ∈ VT , (4.4i)

xjio ∈ Z+, j ∈ V \ VT , i = 1, 2, 3, o = 1, . . . , O, (4.4j)

yjio ∈ {0, 1}, j ∈ V \ VT , i = 1, 2, 3, o = 1, . . . , O, (4.4k)

zji ∈ Z+, j ∈ V, i = 1, 2, 3, (4.4l)

z0i = 0, i = 1, 2, 3, (4.4m)

vk ∈ Z+ , vk ≤ sk, k = 1, . . . ,K. (4.4n)

The equations (4.4b) are to guarantee that in any of T periods only one price
option is chosen for each class. The variable upper bounds (4.4c) guarantee that
in any period and for any price option, the number of seats sold for each of three
classes does not exceed the demand for these seats. The balance equations (4.4d)
count the total number of seats for each of the classes that are sold in any of T
periods. The inequalities (4.4e)–(4.4i) require that the total number of seats sold
be no more that the number of seats in all the planes hired by the airline.

When the problem (4.4) is sold, we know which options to use and how many
seats of each class to be sold in period 1 (this is determined by the values of vari-
ables x0io). When period 1 is over, we will know the actual number of seats of each
class sold in this period, and we will write down a new model for periods 2, . . . , T
to determine optimal price option and number of seats of each class to be sold in
period 2. This procedure is then repeated for periods t = 3, . . . , T .

4.3.3 MIPshell Implementation

To implement IP (4.4), we developed a C++ class named Cyield which definition
is given in Listing 4.7. First, we consider data structures used to represent problem
instances.
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Listing 4.7: Definition of Cyild

#include <mipshell.h>

struct sPlane {
int num; // number of planes of this type
double cost; // plane cost
int q1, q2, q3,

// numbers of seats of first busines and economy classes
r1, r2, r3;

};

struct sNode {
int ind, parent, period;
double prob;
int *demand; // array of options (of size 3*m iOptNum)
};

class Cyield: public CProblem
{

int m iT;
int m iPlaneTypeNum;
sPlane *m pPlane;
int m iOptNum;
double *m dpCost;
int m iNodeNum, m iLeafNum;
sNode *m pNode;

public:
Cyield(const char *name);

#ifdef THREADS
Cyield(const Cyield &other, int thread);
CMIP* clone(const CMIP *pMip, int thread);

#endif
virtual ∼Cyield();

// implementation
int model();

private:
void ReadParameters();
void ReadOptions();
void ReadTree();
void ReadData(const char *name);
};
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Structure sPlane describes planes of a particular type. Its members are:

• num: number of planes of this type;

• cost: cost to hire;

• q1, q2, q3: number of seats of first, business and economy classes;

• r1, r2, r3: percent of seats of first, business and economy classes that can be
transformed into seats of adjacent classes.

Structure sNode represents scenario tree nodes. Its memmbers are:

• ind: node index;

• parent: parent node index;

• period: node level;

• prob: probability that situation described by this node will happen;

• demand: array of price options of size 3*m iOptNum, where demand[3*o+i]
is demand for tickets of type i if price option o is used.

Next we describe all members of Cyild:

• m iT: number of periods;

• m iPlaneTypeNum: number of types of planes;

• m pPlane: array of size m iPlaneTypeNum, where m pPlane[k] describes
plane of type k;

• m iOptNum: number of options at any period;

• m dpCost: array of size 3*m iT*m iOptNum, where m dpCost[(t*3+o)*m iOpt-
Num+i] is cost of class i ticket if option o is used in period t;

• m iNodeNum, m iLeafNum: number of nodes and leaves in scenario tree;

• m pNode: array of nodes (of size m iNodeNum) of scenario tree.

To create and initialize an object of Cyild we call a constructor which is pre-
sented in Listing 4.8. This constructor just calls the function ReadData to read a
number of text files from the folder which name is given by the parameter name.
Implementation of ReadData is straightforward and is not discussed here.
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Listing 4.8: Cyild: constructor

Cyield::Cyield(const char *name): CProblem(name)
{

m pNode=0;
m pPlane=0;
m dpCost=0;
ReadData(name);
}

Now it is left to present our MIPshell model which is displayed in Listing 4.9.
First, we introduce a number of macros that translate object members into param-
eters of IP (4.4). With these macros is almost identical with its origin.

Listing 4.9: Cyild: implementation of model

#define c(j,i,o) (m pNode[j].prob*m dpCost[(m pNode[j].period*3+o)*m+i])
#define p(j) m pNode[j].prob
#define d(j,i,o) m pNode[j].demand[o*m+i]
#define parent(j) m pNode[j].parent
#define s(k) m pPlane[k].num
#define q1(k) m pPlane[k].q1
#define q2(k) m pPlane[k].q2
#define q3(k) m pPlane[k].q3
#define r1(k) m pPlane[k].r1
#define r2(k) m pPlane[k].r2
#define r3(k) m pPlane[k].r3
#define f(k) m pPlane[k].cost

int Cyield::model()
{

int i,j,k,o,t,
T=m iT, n=m iNodeNum,
n0=m iNodeNum-m iLeafNum,
m=m iOptNum, I=3,
K=m iPlaneTypeNum;

VAR VECTOR v(”v”,INT GE,K);
VAR VECTOR x(”x”,INT GE,n0,I,m), y(”y”,BIN,n0,m), z(”z”,INT GE,n,I);

maximize(
sum(j in [0,n0), o in [0,m), i in [0,I)) c(j,i,o)*x(j,i,o)
- sum(k in [0,K)) f(k)*v(k)

);
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forall(j in [0,n0))
sum(o in [0,m)) y(j,o) == 1;

forall(j in [1,n), i in [0,I), o in [0,m))
x(parent(j),i,o) <= d(j,i,o)*y(parent(j),o);

z(0,0) == 0;
z(0,1) == 0;
z(0,2) == 0;

forall(j in [1,n), i in [0,I))
z(j,i) == z(parent(j),i) + sum(o in [0,m)) x(parent(j),i,o);

forall(j in [n0,n)) {
z(j,0) <= sum(k in [0,K)) (q1(k) + (r2(k)*q2(k))/100)*v(k);
z(j,1) <= sum(k in [0,K)) (q2(k) + (r1(k)*q1(k)+r3(k)*q3(k))/100)*v(k);
z(j,2) <= sum(k in [0,K)) (q3(k) + (r2(k)*q2(k))/100)*v(k);
z(j,1) + z(j,3) <= sum(k in [0,K)) (q1(k)+q3(k)+ (r2(k)*q2(k))/100)*v(k);
z(j,1) + z(j,2) + z(j,3) <= sum(k in [0,K)) (q1(k)+q2(k)+q3(k))*v(k);
}

forall(k in [0,K))
v(k) <= s(k);

optimize();
printsol();
return 0;
} // end of Cyield::model

4.3.4 Example

An airline is selling tickets for flights to a particular destination. The flight will
depart in three weeks’ time. Up to six planes can be hired. Each plane costs
$75000 to hire, and has

• 35 first class seats,

• 40 business class seats,

• 60 economy class seats.

Up to 10 % of seats in any one category can be transferred to an adjacent category.
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Table 4.4: Price Options

Class Option 1 Option 2 Option 3

First $1500 $1250 $1000
Busines $1000 $850 $700

Pe
ri

od
1

Economy $500 $400 $300

First $1750 $1500 $1250
Busines $1250 $1000 $850

Pe
ri

od
2

Economy $700 $500 $400

First $1800 $1200 $900
Busines $800 $850 $600

Pe
ri

od
3

Economy $450 $500 $450

An airline wishes to decide a price for each of these seats. There will be further
opportunities to update these prices in after one week and two weeks. Once a
customer has purchased a ticket there is no cancellation option.

For administrative simplicity three price level options are possible in each class
(one of which must be chosen). These options are given in Table 4.4 for the current
period (perion 1) and two future periods.

Demand is uncertain and is affected by ticket prices. Forecasts have been made,
and demand levels have been divided into three scenarios for each period. The
probabilities of these scenarios in each period are:

Scenario 1 0.1
Scenario 2 0.6
Scenario 3 0.3

The forecast demands are shown in Table 4.5.
To solve this example with our program, we have to write down input data into

a number of text files. These files are situated in the folder

$MIPDIR/examples/yield/tests/test1

and are presented in Listings 4.10–4.12.

Listing 4.10: Yield management example: file param.txt

3 1
6 75000 35 10 40 10 60 10
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Table 4.5: Forecast Demands

Option 1 Option 2 Option 3

First 25 30 35
Busines 40 50 70

Sc
en

ar
.1

Economy 100 120 130
First 40 50 70
Busines 90 85 90

Sc
en

ar
.2

Economy 100 105 140
First 90 100 120
Busines 90 95 95

P
e

ri
o

d
1

Sc
en

ar
.3

Economy 110 105 135

First 40 50 65
Busines 85 90 85

Sc
en

ar
.1

Economy 100 105 125
First 20 80 100
Busines 100 120 160

Sc
en

ar
.2

Economy 120 130 180
First 100 110 160
Busines 40 60 100

P
e

ri
o

d
2

Sc
en

ar
.3

Economy 25 80 120

First 60 70 80
Busines 80 100 110

Sc
en

ar
.1

Economy 100 120 160
First 60 80 120
Busines 20 80 90

Sc
en

ar
.2

Economy 100 120 140
First 100 140 160
Busines 80 90 120

P
e

ri
o

d
3

Sc
en

ar
.3

Economy 120 130 140
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From Listing 4.10 we see that we are to solve an instance with the following
parameters: T = 3, K = 1, s1 = 6, f1 = $75000, q11 = 35, r11 = 10, q12 = 40,
r12 = 10, q13 = 60, r13 = 10.

Listing 4.11: Yield management example: file options.txt

3
1500 1000 500
1250 850 400
1000 700 300

1750 1250 700
1500 1000 500
1250 850 400

1800 800 450
1200 850 500
900 600 450

Listing 4.11 shows that three (the number in the first line) options are available
in each of three periods. Starting from line 2, each group of three lines presents
price options for each of three periods. Any line in a group presents an option for
a particular scenario. An option is described by three numbers that are prices of
first, business, and economy class tickets respectively. For example, if scenario 3
happens in period 2, then ticket prices are: $1250 for first class, $850 for business
class, and $400 for economy class.

Listing 4.12: Yield management example: file tree.txt

39
1 0 0.1 25 40 100 30 50 120 35 70 130
2 0 0.6 40 90 100 50 85 100 70 90 140
3 0 0.3 90 90 110 100 95 105 120 95 135

4 1 0.1 40 85 100 50 90 105 65 85 125
5 1 0.6 20 100 120 80 120 130 100 160 180
6 1 0.3 100 40 25 110 60 80 160 100 120
7 2 0.1 40 85 100 50 90 105 65 85 125
8 2 0.6 20 100 120 80 120 130 100 160 180
9 2 0.3 100 40 25 110 60 80 160 100 120
10 3 0.1 40 85 100 50 90 105 65 85 125
11 3 0.6 20 100 120 80 120 130 100 160 180
12 3 0.3 100 40 25 110 60 80 160 100 120
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13 4 0.1 60 80 100 70 100 120 80 110 160
14 4 0.6 60 20 100 80 80 120 120 90 140
15 4 0.3 100 80 120 140 90 130 160 120 140
16 5 0.1 60 80 100 70 100 120 80 110 160
17 5 0.6 60 20 100 80 80 120 120 90 140
18 5 0.3 100 80 120 140 90 130 160 120 140
19 6 0.1 60 80 100 70 100 120 80 110 160
20 6 0.6 60 20 100 80 80 120 120 90 140
21 6 0.3 100 80 120 140 90 130 160 120 140
22 7 0.1 60 80 100 70 100 120 80 110 160
23 7 0.6 60 20 100 80 80 120 120 90 140
24 7 0.3 100 80 120 140 90 130 160 120 140
25 8 0.1 60 80 100 70 100 120 80 110 160
26 8 0.6 60 20 100 80 80 120 120 90 140
27 8 0.3 100 80 120 140 90 130 160 120 140
28 9 0.1 60 80 100 70 100 120 80 110 160
29 9 0.6 60 20 100 80 80 120 120 90 140
30 9 0.3 100 80 120 140 90 130 160 120 140
31 10 0.1 60 80 100 70 100 120 80 110 160
32 10 0.6 60 20 100 80 80 120 120 90 140
33 10 0.3 100 80 120 140 90 130 160 120 140
34 11 0.1 60 80 100 70 100 120 80 110 160
35 11 0.6 60 20 100 80 80 120 120 90 140
36 11 0.3 100 80 120 140 90 130 160 120 140
37 12 0.1 60 80 100 70 100 120 80 110 160
38 12 0.6 60 20 100 80 80 120 120 90 140
39 12 0.3 100 80 120 140 90 130 160 120 140

Listing 4.12 describes the scenario tree for our example. This tree has 40 nodes
indexed from 0 to 39. All the other nodes are split into three levels: 1 (the root
node) in level 0, 3 in level 1, 9 in level 2, and 27 in level 3. In tree.txt the root
node is not presented, the levels are separated by blank lines, and any line, starting
from the second, describes a node in the following format:

• node index;

• parent node index;

• probability of reaching this node from its parent;

• demand forecast for each of three options (for example, if option 2 is used at
node 27, then a business class ticket price is 90).
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Having been prepared these three input files, to solve our example, we enter
the commands

cd $MIPDIR/examples/yield/tests/test1; yield

As the result we will get a solution to our example written into the text file test1.sol.
In fact, we are interested to know the values of nine variables: x(0,i,o), i,o=0,1,2.

Only three of these nine variables can take nonzero values. If we look into test1.sol,
we will see that these three variables are:

x(0,0,0)=25, x(0,1,0)=40, x(0,2,0)=100.

We see that option 1 (indexed by 0 in MIPshell model) must be used in period 1,
and then 25, 40, and 95 tickets of, respectively, classes 1, 2, and 3, are expected to
be sold.

So let us assume that the airline assigned prices $1500, $1000, $500 for, re-
spectively, first, busines, and economy class tickets. One week later, it turned out
that the airline had sold 20, 50, and 100 tickets of, respectively, first, busines, and
economy class tickets.
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Appendix A

Modelling With MIPshell

MIPshell is an environment that facilitates modelling and solving linear and mixed-
integer programming problems with the Mixed-Integer Programming Class Library
(MIPCL).

We write a mixed-integer program (MIP) as

cTx→ max

b1 ≤ Ax ≤ b2,
d1 ≤ x ≤ d2,

xi – integer, i ∈ S

where A is an m × n-matrix; b1, b2 are m-dimensional vectors, and c, d1, d2 are
n-dimensional vectors; x is an n-dimensional vector of variables or unknowns;
S is a subset of the set N = {1, . . . , n} of column indices. A MIP is a linear
program (LP) if there are not integer variables (S = ∅). If all the variables are
integer (S = N ), then we have an integer program (IP).

MIPshell comprises

• collection of C++ classes that represent variables, constraints, sets, vectors,
arrays, and etc.;

• library of functions to simplify posing optimization problems;

• preprocessor that translates new modelling operators into fragments of C++
code.

After preprocessing any MIPshell program is converted into a C++ program. MIP-
shell is a tool that simplifies using MIPCL. Having been given a mathematical
model of an optimization problem, the user can write down it as a MIPshell pro-
gram very quickly. Another advantage of using MIPshell is in that we can rela-
tively easily make changes to a model later, even after several weeks or months.

In MIPshell there is no separation between modelling statements and C++
statements. Therefore, the user can easily program complex solution algorithms.

Prototypes for all MIPshell classes and functions are contained in the mip-
shell.h header file which needs to be included to any MIPshell program.

89
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A.1 Problem Definition

Any optimization problem is represented in MIPshell as an instance of the base
class CProblem. We create a problem by providing to the constructor a problem
name. Then we use functions of the base classes CProblem, CMIP, and CLP.
Usually MIPshell programs start with two statements similar to the following ones:

CProblem prob(”name”);
prob.model();

A.2 Sets And Indices

In MIPshell we use sets of integers (INT SET), reals (REAL SET), and indices
(INDEX SET).

Indices are objects of type CIndex (INDEX is an alias for CIndex). Any
object of type CIndex represents an index as a string of up to 63 characters. The
next example demonstrate the most commonly used operations with indices:

INDEX i1(1,2,3), i2(”Prod4”,5), i[2];
cerr << i1 + i2 << endl;
if (i1.include(3)) {
i1.split(2,i);
cerr << i[0] << ” ” << i[1] << endl;

}

First we create two indices i1, i2, and an array of indices, i, of size two. Fur-
thermore, i1 and i2 are initialized to store, respectively, the strings ”1,2,3” and
”Prod4,5”. By definition i1+i2 is an index that stores the string ”1,2,3,Prod4,5”,
which is printed to the standard output stream. Each nonempty index-string con-
sists of indices separated by commas. The last three lines of code do the following.
If ”3” is a subindex of i1 (which is true), i1 is split into subindices ”1”, ”2”, ”3”,
and the first two subindices are stored in the array i. Therefore, the last statement
prints the string ”1 2”.

In the following example, we declare two sets: I of integers, R of reals, and N
of indices:

INT SET I(”{1,3,5,7}”);
REAL SET R;
INDEX SET N;

After creation, R and N are empty set, while I is initialized to the set {1, 3, 5, 7}.
We add new items to existing sets using the add statements:

I.add(5); R.add(3.14); N.add(”Prod 1”);
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We may compute intersection (operator *), union (+), and difference (-) of any
two sets of the same type. Mixing sets of different types is not allowed. If I1, N1,
and N2 are declared as in the example below, we can not write N1=I1-N2. Given a
set S, an expression e in S takes value true if e ∈ S. Next we give some examples
showing manipulations with sets:

INT SET I1,I2(”{-3,0,1,4,6}”), I3(”{1,2,5,6,9}”);
INDEX SET N1, N2(”Paris,Berlin,Minsk”), N3(”London,Row”);
I1=I2*I3; // I1={1,6}
I1+=”0,3”; // I1={0,1,3,6}
N1=N2+N3; // N1={Paris,Berlin,Minsk,London,Rom}

Input/output operations with sets are shown in the next paragraph.

A.3 Arrays And Vectors

In MIPshell dense arrays are called vectors, while sparse arrays (with many zero/empty
entries which are not stored) are simply called arrays.

A.3.1 Vectors

Two types of MIPshell vectors, INT VECTOR and REAL VECTOR, are spe-
cializations of a single template class CVector having the constructor:

template <typename Tell>
CVector<Tell>::CVector(int size0, int size1=0, int size2=0, int size3=0);

Then INT VECTOR and REAL VECTOR are defined as follows:

typedef CVector<int> INT VECTOR;
typedef CVector<double> REAL VECTOR;

Thus, we declare a two-dimensional vector of integers of size 4× 5 as follows

INT SET A(4,5);

Vector indices are always integers. Furthermore, vectors are indexed from zero!
Note also that MIPshell does not perform range checking on vector indices.

A.3.2 Arrays

Six types of MIPshell arrays are:

INT ARRAY : array of integers;

REAL ARRAY : array of reals;

INDEX ARRAY : array of indices;
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INT SET ARRAY : array of sets of integers;

REAL SET ARRAY : array of sets of reals;

INDEX SET ARRAY : array of sets of indices.

The above MIPshell arrays are specializations of a single template class CArray:

typedef CArray<int> INT ARRAY;
typedef CArray<double> REAL ARRAY;
typedef CArray<CIndex> INDEX ARRAY;
typedef CArray<CSet<int> > INT SET ARRAY;
typedef CArray<CSet<double> > REAL SET ARRAY;
typedef CArray<CSet<CIndex> > INDEX SET ARRAY;

The maximum dimension of an array is 4!
Let us remember that MIPshell arrays are used to represent sparse arrays with

many zero (or empty) elements which are not stored in the computer memory.
By convention, A(3,”Prod 10”,8) returns a reference to a constant zero (or empty)
element if an entry indexed by (3,Prod 10,8) has not been previously added to A.
For this reason, we cannot assign values to array entries and instead have to use
the add statements. In the following fragment we declare an array of reals, add a
number of entries, and then print some array values.

REAL ARRAY R;
A(1).add(5.3);
A(2,”unit 4”).add(-1.1);
A(0,1,”x”).add(5.3);
cout << A(2,”unit 4”) << endl; // prints -1.1
cout << A(1,1) << endl; // prints 0

When modelling with MIPshell, we can use any C++ structures, including
arrays, which are one-dimensional (excluding static arrays). Representing multi-
dimensional arrays by one-dimensional ones may obscure a model with unneces-
sary details. Therefore, we recommend using multi-dimensional MIPshell vectors
and arrays. Besides, using MIPshell vectors and arrays is more safe since in this
case allocating and freeing memory is done by MIPshell.

A.3.3 Input/Output

The next example program illustrates input/output operations with vectors, arrays,
and sets.

#include <mipshell.h>
#include <iostream>
using namespace std
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int main() {
REAL VECTOR A;
INT SET S;
REAL ARRAY R;
cerr << ”Enter a real vector: ”;
cin >> A;
cerr << ”Enter a set of integers: ”;
cin >> S; S-={2};
cerr << ”Enter an array of reals: ”;
cin >> R;
cout << A << endl;
cout << S << endl;
cout << R << endl;
}

When we compile and run this program, if we type in first

dim(2,2): [[2,1.5],[3.1,4]]

then

{1,2,3,5,7}

and then

{(0,3;3.14),(1,2;2.0),(3,1;-1.1)}

as input, the output is

dim(2,2):
[[2,1.5],
[3.1,4]]
{1,3,5,7}
{(0,3;3.14),(1,2;2.0),(3,1;-1.1)}

A.4 Variables

In MIPshell, variables are instances of the CVar class. The most commonly used
constructor of CVar is defined as

CVar(const char *name, int type=REAL GE);

The first argument is the variable name of length up to 63 characters. The name
is used when a solution is printed. The second argument defines the type and, for
integer and binary variable, the priority of the variable. Variables are of one of the
following types:

{ REAL,REAL GE,REAL LE, INT,INT GE,INT LE,BIN};
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Depending on the type, the domain of a variable is as in the following table:

REAL REAL GE REAL LE INT INT GE INT LE BIN
R R+ R− Z Z+ Z− {0, 1}

Here R (resp. Z) is the set of reals (resp. integers), and

R+ = {α ∈ R : α ≥ 0},
R− = {α ∈ R : α ≤ 0},
Z+ = {α ∈ Z : α ≥ 0},
Z− = {α ∈ Z : α ≤ 0}.

Variables of types REAL, REAL GE, and REAL LE are called real or continuous.
Variables of types int, INT GE, INT LE, BIN are integer variables. A binary vari-
able of type BIN is also an integer variable.

The priority of a variable is a nonnegative integer (of length at most 16 bit)
that is used when a integer variable with fractional value is selected for branching;
the higher priority the higher probability for variable to be selected. The composed
type of a variable is the sum of its type and priority. For example, we declare a
nonnegative integer variable x named X and having priority of value 2 as follows:

VAR x(”X”,INT GE+2);

Here we used an alias for CVar defined by

typedef CVar VAR.

A.4.1 Arrays Of Variables

MIPshell provides a specific class, CVarVector, for representing (multidimen-
sional) vectors of variables. Normally we define a vector of variables using the
constructor

CVarVector(const char *name, int type,
int size0, int size1=0, int size2=0, int size3=0);

The meaning of the first two parameters is the same as for the constructor of CVar,
the last four parameters define the size of the vector. In MIPshell in place of
CVarVector we can also use the alias name VAR VECTOR. For instance, the
declaration

VAR VECTOR x(”X”,BIN+8,5,4);

means that x is a (5 × 4)-vector of binary variables x(i,j) each of priority 8, x(i,j)
is named X(i, j). Let us remember that variable names are strings of up to 63
character. Because of this restriction, if the full name (name itself plus indices) of
a vector member has more then 63 characters, the tail string starting from character
64 is truncated.
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Vectors of variables in MIPshell are indexed from zero!
In MIPshell for indexing variables, we can also use sets of indices or integers.

To declare an array of variables, we use one of the constructors:

CVarArray(const char *name, int type, CBasicSet& s0),
CVarArray(const char* name, int type,

CBasicSet& s0, CBasicSet& s1),
CVarArray(const char *name, int type,

CBasicSet& s0, CBasicSet& s1, CBasicSet& s2),
CVarArray(const char *name, int type,

CBasicSet& s0, CBasicSet& s1,
CBasicSet& s2, CBasicSet& s3).

The maximum dimension of an array of variables is 4. The first two parameters are
identical to those in the CVar constructor. The CBasicSet class is the virtual base
class for the CSet classes. Therefore, the INT SET and INDEX SET objects can
be used when declaring variable arrays. For example, the following declarations
are legal in MIPshell:

INT SET I(”{1,3,5,7}”);
INDEX SET Prod(”{Gasoline,Oil,JetFuel}”);
VAR ARRAY x(”X”,BIN,I,Prod);

When a vector or array of variables is created, all its elements (variables) are of
the same type, and have the same domain. We can change the type of a particular
variable, say x(0,0), by calling either

x(0,0).SetType(INT GE);

or

settype(x(0,0),INT GE);

A.5 Constraints

In MIPshell constraints are instances of the CCtr class. Usually, we do not declare
objects of type CCtr. We simply write down constraints and leave the rest to
MIPshell. Two examples of valid MIPshell constraints are

0 <= x(i,2) - 4.5*z + 2*y(4) <= 5;
sum(i in S: i < j) a(i,j)*x(i,j) == b(i);

The sum operator is discussed in section A.6. Here it is enough to say that the
latter MIPshell constraint in the mathematical notation is written as follows:∑

i∈S, i<j
a(i, j) · x(i, j) = b(i).

Each MIPshell constraint is translated into one MIPCL constraint. Therefore,
two-sided constraints like the following one are not allowed:
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x1 <= x2 - x3 <= x4 + 5;

Here x1,x2,x3, and x4 are MIPshell variables. This constraint should be rewritten,
for example, as follows:

x1 <= x2 - x3;
x2 - x3 <= x4 + 5;

When we are solving an LP and are interested in having an optimal dual solu-
tion, in particular, shadow prices for constraints, we need to assign names to the
constraints. The following examples show how it can be done:

(x - 2*y <= z).SetName(”name”);
(sum(int i in [0,n)) x(i,j) == 1).SetName(”assign”,j);

In the latter example the constraint is given the name ”assign(j)”, where j is an
integer. When naming constraints we can use up to three indices. The maximum
total name length (with all indices) is 31. Be careful, statements like the following
one

(x <= 1.0).SetName(”name”);

are not correct. This is because the above statement is used to change the upper
bound of x, and MIPshell does not create any constraint. Thus, there is no object
to assign the name.

A.5.1 Discrete Variables

A discrete variable is a real variable restricted to take values from a given set of
reals. We declare discrete variables in one of the two following ways:

x in ”{2,5,9}”; // x ∈ {2, 5, 9}
y in S; // y ∈ S

Here S is a set of reals (of type REAL SET). Be careful, in the latter case any
changes applied to S until the problem is loaded (see the description of the load
function in Section A.6) will also affect the domain of y.

A.5.2 Piecewise-Linear Functions

Let a real variable y be a function of another real variable x. We may approximate
this function by a piecewise-linear function and represent the latter in MIPshell as
follows:

y1 == function(x1,”(0,0),(1,1),(2.4),(3,9),(4,16),(5,25)”);
y2 == function(x2,A);
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In the first example y1 ≈ x12, x1∈ [0, 5]; in the second A is a real (of type
REAL VECTOR) vector of size k × 2, y2 is a piecewise-linear function of x2,
and

(A(0, 0), A(0, 1)), . . . , (A(k, 0), A(k, 1))

are its breakpoints.
Similarly, we may define a set of points (x, y) lying on a piecewise-linear

curve:

curve(x1,y1,”(0,0),(1,1),(2.4),(3,9),(4,16),(5,25)”);
curve(x2,y2,A);

The difference between two constructs, function and curve, is in that the pairs
of points in the declaration of a function must be listed in the increasing order of
the x-values.

A.6 MIPshell Functions And Operators

Most of the MIPshell functionality is due to operator overloading. Besides there
are a few functions and operators that are briefly discussed in this section:

• void load(): loads the problem (builds the matrix, does preprocessing, per-
forms scaling, and etc.).

• void solve(): solves the problem (the problem must be previously loaded).

• void optimize(): loads and solves the problem (load() + solve()).

• void printsol(const char *fileName=0): prints the solution to the file which
name is given by the string fileName. If fileName=0, then the output file
name is the problem name appended with the extension ”.sol”.

• double getobj(): returns the objective value of the optimal solution.

• double getval(CVar& var): returns the value of the var variable.

• double getredcost(CVar& var): returns the reduced cost of the variable var
(only for LPs).

• double getprice(CCtr& ctr): returns the shadow price of the constraint ctr
(only for LPs).

• void preprocoff(): switches off preprocessing. Normally, preprocessing is
switched off when a dual optimal solution is needed.

• void setcutdepth(int depth): cuts will be generated for nodes of depth less
than deph. If depth=0, cuts will be generated only for the root LP. To switch
off generating cuts, call setcutdepth with depth set to −1.
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• void settype(CVar& var, VARTYPE type): sets the type of the variable var
to the value of type.

The forall and sum operators are inherent to practically any optimization mod-
elling language. In MIPshell these operators are of the form

forall(i1 in S1,...,ik in Sk: condition) operator,
sum(i1 in S1,...,ik in Sk: condition) linear expression,

where i1,. . .,ik are integers, S1,. . .,Sk are sets of integers, and operator is any
C++ operator, including the new MIPshell operators. A linear expression is a
multiplicative expresion that is linear with respect to MIPshell variables.

In the next code fragment both operators, forall, and sum, are used:

forall(int i in [0,m)) {
sum(int j in [0,n)) a(i,j)*x(i,j) == 1;
x(i,j) <= b(i);

}

For integers k and l, [k, l) (resp. [k, l]) denotes the set {k, . . . , l − 1} (resp.
{k, . . . , l}).

Besides those mentioned above, there are also a few functions which are used
when developing applications with user defined cuts. In Chapter ??, we give an
example showing how to write such applications.

A.7 Our First MIPshell Applications

A.7.1 Product Mix

An engineering factory can produce five products by using two production pro-
cesses: grinding and drilling. Each unit of each product yields the following con-
tribution to profit:

Prod 1 Prod 2 Prod 3 Prod 4 Prod 5
$550 $600 $350 $400 $200

Processing time (in hours) per product units are given below. A dash indicates
that a process is not needed.

Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Grinding 12 20 — 25 15
Drilling 10 8 16 — —

In addition the final assembly of each unit of each product requires 20 hours of an
employee’s time.
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The factory has three grinding and two drilling machines, and works a six-
day week with two shifts of 8 hours on each day. Eight workers are employed in
assembly, each working one shift a day.

The problem is to decide how many units of each product to produce so as to
maximize the total factory profit.

To formulate a mathematical model, we introduce variables x1, x2, . . . , x5 where
xi is the number of units of product i to be produced in a week. The complete
model is as below:

550x1 + 600x2 + 350x3 + 400x4 + 200x5 → max, (A.1a)

12x1 + 20x2 + 25x4 + 15x5 ≤ 288, (A.1b)

10x1 + 8x2 + 16x3 ≤ 192, (A.1c)

20x1 + 20x2 + 20x3 + 20x4 + 20x5 ≤ 384, (A.1d)

x1, x2, x3, x4, x5 ∈ Z+. (A.1e)

Given that we have three grinding machines working for a total of 96 hours a
week each, we have 288 hours of grinding capacity available. The total amount of
grinding capacity that we use in a week is given by the expression on the left hand
side of (A.1b).

Similarly, constraint (A.1c) says that we cannot exceed the drilling capacity in
192 hours a week.

The fact that we have only eight workers each working 48 hours a week gives
us a labor capacity of 384 hours. Since each unit of each product uses 20 hours of
this capacity we have the constraint (A.1d).

Finally, the constraint (A.1e) simply says that all five variable are nonnegative
integers.

MIPshell-implementation

The easiest way of using MIPshell is to run a shell script mipinit to build a
skeleton MIPshell-application with an empty model, and then extend this skeleton
application.

So, first we open a consol window and enter our working directory. Then we
use the command

mipinit prodmix

to create a new directory called prodmix and populate it with a number of subdi-
rectories and files. In particular, there are four files in the directory sources:

main.cpp, prodmix.h, prodmix.cpp, and prodmix.mod.

To solve our simple example, we need to modify only one of these files, prod-
mix.mod. Its contents is as in Listing A.1.
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Listing A.1: MIPshell-template

int Cprodmix::model()
{
// TODO: write your model here

optimize();
printsol();

} // end of Cpromix::model

In place of the line ”// TODO: write your model here”, we need to write our
code. A MIPshell-implementation of IP (A.1) is given in Listing A.2.

Listing A.2: MIPshell-implementation of (A.1)

int Cprodmix::model()
{

VAR VECTOR x(”x”,INT GE,5);
maximize(550*x(0) + 600*x(1) + 350*x(2) + 400*x(3) + 200*x(4));
12*x(0) + 20*x(1) + 25*x(3) +15*x(4) <= 288;
10*x(0) + 8*x(1) + 16*x(2) <= 192;
20*x(0) + 20*x(1) + 20*x(2) + 20*x(3) + 20*x(4) <= 384;
optimize();
printsol(”prodmix.sol”);
return 0;
} // end of Cpromix::model

It should be noted that a variable xi in the mathematical model corresponds
to the MIPshell variable x(i − 1). Similar mappings between mathematical and
MIPshell variables are implicitly assumed in many other examples of this guide.

We build an executable with the commands

cd /prodmix/release
make all

and then run the executable to solve our instance

cd ../bin
promix

If the output file prodmix.sol looks like the one given below, then you are
done; otherwise, check once again you model and correct it.

Objective Value = 10800
Variables

Name Value



A.7. Our First MIPshell Applications 101

Cracking

-

-

-

--

-

--

-

-

-

-

-

Light Naphthas

Heavy Naphthas

Cracked
Gasolines
Cracked

Oils

Heavy Oils

Residium

Heavy

crude

Light

crude

Aviation
Gasoline

Motor
fuel

Jet
fuel

Various
fuel-oils

Lube
oils

-OilsCrude

Distilation

Gasoline

Blending

Fuel-oil

Blending

Figure A.1: Simplified refinery example

x(4) 0.000000
x(3) 0.000000
x(2) 0.000000
x(1) 7.000000
x(0) 12.000000

A.7.2 Oil Refineries

The diagram in Figure A.1 shows a simplified model for planning a day’s produc-
tion of the process of refining crude oil to gasolines, fuels, fuel-oils and lube-oils.

Looking through the model in Listing A.3 we find that there is no restriction
on the availability of heavy crudes, while for light crudes we have a restriction of
10 units per day, one unit being 1000 barrels. The distillation column can process
a maximum of 25 units per day and the cracking unit can process at most 8 units
per day. Crude distillation gives light and heavy naphthas.

Listing A.3: MIPshell model for refinery example

int Crefining::model()
{

VAR HeavyCrude(”Heavy Crude”,REAL GE),
LightCrude(”Light Crude”,REAL GE),
LightNaphthas(”Light Naphthas”,REAL GE),
HeavyNaphthas(”Heavy Naphthas”,REAL GE),
Oils(”Oils”,REAL GE),
HeavyOils(”Heavy Oils”,REAL GE),
Residium(”Residium”,REAL GE),
CrackedGasolines(”Cracked Gasolines”,REAL GE),
CrackedOils(”Cracked Oils”,REAL GE),
AviationGasoline(”Aviation Gasoline”,REAL GE),
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MotorFuel(”Motor Fuel”,REAL GE),
JetFuel(”Jet Fuel”,REAL GE),
FuelOils(”Fuel Oils”,REAL GE),
LubeOils(”Lube Oils”,REAL GE);

maximize(6.5*AviationGasoline + 4.6*MotorFuel +
3.5*JetFuel + 2.5*FuelOils + 0.8*LubeOils
- 1.5*HeavyCrude - 1.7*LightCrude
- 0.4*LightNaphthas - 0.4*HeavyNaphthas - 0.9*Oils
- 0.3*HeavyOils - 0.3*Residium
- 0.4*CrackedGasolines - 0.3*CrackedOils);

LightCrude <= 10; // Light crude avail.
(HeavyCrude + LightCrude <= 25).SetName(”Dist. capacity”);
Oils <= 8; // Cracking capacity
(0.12*HeavyCrude + 0.17*LightCrude ==

LightNaphtas).SetName(”Dist− >LightNaphthas”);
(0.23*HeavyCrude + 0.28*LightCrude ==

HeavyNaphtas).SetName(”Dist− >HevyNaphthas”);
(0.41*HeavyCrude + 0.34*LightCrude == Oils + HeavyOils).SetName(”Dist->Oils”);
(0.24*HeavyCrude + 0.21*LightCrude ==

Residium + LubeOils).SetName(”Dist->Residium”);
(CrackedGasolines == 0.65*Oils).SetName(”Cracking->Gasoline”);
(CrackedOils == 0.35*Oils).SetName(”Cracking->Oils”);
(AviationGasoline + MotorFuel ==

LightNaphtas + HeavyNaphtas + CrackedGasolines).SetName(”Gasoline blending”);
JetFuel + FuelOils <=

(HeavyOils + Residium + CrackedOils).SetName(”Fuel-oil blending”);
(AviationGasoline <= 1.5*LightNaphthas).SetName(”Quality”);
(AviationGasoline <= 1.2*LightNaphthas + 0.3*HeavyNaphthas).SetName(”Octane number”);
(AviationGasoline <= 0.5*MotorFuel).SetName(”Sales limit (av.gas)”);
JetFuel <= 4; // Sales limit
preprocoff();
optimize();
printsol(”refining.sol”);
return 0;
}

The output of the distillation is in proportion to the inputs and consists of four
products as indicated in the diagram. For instance, from the model we see that
one unit of light crude input ”transforms” into 0.17 units of light naphtha, while
the yield from one unit of heavy crude is 0.12 units of light naphtha. From an
engineering perspective it is realistic to assume that the technology is ”linear” and
thus

LightNaphthas = 0.12HeavyCrude+ 0.17LightCrude.

Likewise one interprets the yield equation for the other three intermediate products.
Note also that in the simplified model we assume no ”loss”, i.e. every unit

of heavy crude is split without loss into four intermediate products. Cracking oils
results in cracked gasoline and cracked oils in the proportion as indicated. ”Blend-
ing” the various inputs results in marketable products, aviation gasoline, motor
fuel, jet fuel, various fuel-oils, lube oils.

In addition to the constraints that we have mentioned so far there are quality
constraints and sales limitations. For instance, the constraint

AviationGasoline ≤ 1.5LightNaphthas
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means that one unit of aviation gas requires at least 2
3 units of light naphtha to

assure the necessary quality as measured e.g. by the gas’ volatility.
The objective is to maximize the sum of the profits of selling output products

minus the sum of the costs of buying the input products and producing the inter-
mediates. The profits and costs coefficients are given in dollars per unit.

An optimal solution to the refinery example produced by the MIPCL solver is
presented in Listing A.4.

Listing A.4: Solution to the refinery example

Objective Value = 51.6683 Variables
Name Value Reduced Cost

Lube Oils 0.000000 -1.400000
Fuel Oils 6.050000 0.000000
Jet Fuel 4.000000 1.000000

Motor Fuel 9.966667 0.000000
Aviation Gasoline 4.983333 0.000000

Cracked Oils 2.800000 0.000000
Cracked Gasolines 5.200000 0.000000

Residium 5.700000 0.000000
Heavy Oils 1.550000 0.000000

Oils 8.000000 0.811667
Heavy Naphthas 6.250000 0.000000
Light Naphthas 3.500000 0.000000

Light Crude 10.000000 0.063333
Heavy Crude 15.000000 0.000000

Constraints
Name Shadow price

Sales limit (av.gas) 1.266667
Octane number 0.000000

Quality 0.000000
Fuel-oil blending 2.500000
Gasoline blending 5.233333

Cracking->Oils 2.200000
Cracking->Gasoline 4.833333

Dist->Residium 2.200000
Dist->Oils 2.200000

Dist->HevyNaphthas -4.833333
Dist->LightNaphthas -4.833333

Dist. capacity 1.621667

A.8 Fixed Charge Network Flows

In the previous section we are solving particular MIP instances. But usually we
need to develop computer programs that solve problems which are subclasses of
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Figure A.2: An instance of FCNF

MIP. In this section we describe a MIPshell implementation of the fixed charge
network flow problem.

A transportation network is given by a directed graph (digraph) G = (V,E).
For each node v ∈ V , we know the demand dv in some product. If dv > 0, then v
is a demand node; if dv < 0, then v is a supply node; dv = 0 for transit nodes. It
is assumed that supply and demand are balanced:

∑
v∈V dv = 0. The capacity of

an arc e ∈ E is ue > 0, and the cost of shipping xe > 0 units of product along this
arc is fe + cexe. Naturally, if the product is not moved through the arc (xe = 0),
then nothing is paid. The fixed charge network flow problem (FCNF) is to decide
on how to transport the product from supply nodes to demand nodes so that the
transportation expenses are minimum.

The FCNF problem appears as a subproblem in many practical applications
such as design of transportation and telecommunication networks, production plan-
ning problems.

An instance of FCNF problem is given in Figure A.2, where the node numbers
and demands are depicted in the upper and lower segments of the node circles.
Any (undirected) edge e = (i, j) represents two (directed) arcs e1 = (i, j) and
e2 = (j, i). All horizontal arcs have capacity ue = 3, fixed cost fe = 1 and per-
unit cost ce = 0, and all vertical arcs have capacity ue = 4, fixed cost fe = 2 and
per-unit cost ce = 0.
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Introducing variables

xe: flow (quantity of shipping product) through arc e ∈ E,

ye = 1, if product is shipped (xe > 0) through arc e, and ye = 0 otherwise,

we formulate the FCNF problem as follows:∑
e∈E

(feye + cexe)→ min (A.2a)∑
e∈E(V,v)

xe −
∑

e∈E(v,V )

xe = dv, v ∈ V, (A.2b)

0 ≤ xe ≤ ueye, e ∈ E, (A.2c)

ye ∈ {0, 1}, e ∈ E. (A.2d)

Here the objective (A.2a) minimizes transportation expenses. The balance
equations (A.2b) require that the number of flow units entering each particular
node equals the number of flow units leaving the node. The variable upper bounds
(A.2c) are capacity restrictions with the following meaning:

• the flow value through any arc cannot exceed the capacity of the arc;

• if some arc is not used for shipping product (ye = 0), then the flow value
through this arc is zero (xe = 0).

A.8.1 MIPshell implementation

A straightforward MIPshell implementation of IP (A.2a)–(A.2d) is given in List-
ings A.5–A.10.

The function main from Listing A.5 creates an object named prob of class
Cfcnf for an FCNF instance from a file passed to main as its only parameter. Then
main calls the function model (of the base class CProblem) to build and then solve
a model for the FCNF instance stored in prob.

Listing A.5: Fixed Charge Network Flows: main function

#include <iostream>
#include ”fcnf.h”

int main(int argc, const char *argv[])
{

try {
Cfcnf prob(argv[1]);
prob.model();
}
catch(CException *pe) {
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std::cerr << pe− >GetErrorMessage() << std::endl;
delete pe;
return 1;
}
return 0;

}

Class Cfcnf is defined in Listing A.6. Its members are:

• m iVertNum: number of nodes;

• m iEdgeNum: number of arcs;

• m ipTail[e], Head[e]: tail and head of arc e=(m ipTail[e],m ipHead[e]);

• m ipDemand[v]: demand for flow at node v;

• m ipCapacity[e], m ipCost[e], m ipFixedCost[e]: respectively, capacity, cost
and fixed cost of arc e.

Listing A.6: Fixed Charge Network Flows: file fcnf.h,

#include <mipshell.h>

class Cfcnf: public CProblem
{

int m iVertNum, m iEdgeNum,*m ipTail,*m ipHead,
*m ipCapacity,*m ipFixedCost,*m ipCost,*m ipDemand;

public:
Cfcnf(const char *fileName);

#ifdef THREADS
Cfcnf(const Cfcnf &other, int thread);
CMIP* clone(const CMIP *pMip, int thread);

#endif
virtual ∼Cfcnf();

////////////////////////// implementation
int model();
void PrintSolution(VAR VECTOR &flow);

private:
void ReadNet(const char *fileName);

};

Implementation of constructors and the destructor of Cfcnf is given in List-
ing A.7. The constructor
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Cfcnf::Cfcnf(const char *fileName)

calls ReadNet(fileName) (see Listing A.8) to read the description of an FCNF in-
stance from the file which name is passed as the only input parameter fileName.

Implementation of the clone constructor

Cfcnf::Cfcnf(const Cfcnf &other, int thread)

and the clone-function

CMIP* Cfcnf::clone(const CMIP *pMip, int thread)

is standard for all MIPCL-applications that do not overload any function of the
base classes CMIP or CLP.

The destructor

Cfcnf::∼Cfcnf()

frees the memory allocated in ReadNet for the arrays describing the network. Since
these arrays are used only by the root thread to pose a MIPshell-model and then
to write an optimal solution to a file, we do not need to share these arrays with the
other threads.

Listing A.7: Fixed Charge Network Flows: file fcnf.cpp (Part 1)

#include ”fcnf.h”
#include <fstream>
#include <cstring>
// Cfcnf::Cfcnf(const char *fileName): CProblem(”fcnf”)
{

m ipTail=m ipHead=m ipCapacity=
m ipFixedCost=m ipCost=m ipDemand=0;
ReadNet(fileName);
}

#ifdef THREADS
Cfcnf::Cfcnf(const Cfcnf &other, int thread): CProblem(other,thread)
{
} // Cfcnf::Cfcnf(const char *fileName)

CMIP* Cfcnf::clone(const CMIP *pMip, int thread)
{

return static cast<CMIP*>(new Cfcnf(*static cast<Cfcnf*>(
const cast<CMIP*>(pMip)),thread));

}
#endif



108 Appendix A. Modelling With MIPshell

Cfcnf::∼Cfcnf()
{
#ifdef THREADS

if (!GetParent()) {
#endif

if (m ipTail)
delete[] m ipTail;

#ifdef THREADS
}

#endif
}
//////////////////////////
#include ”fcnf.xyz”

The function ReadNet from Listing A.8 reads an instance of FCNF from a text
file of the following format: Line 1 contains 2 integer numbers n and m (number
of nodes and number of edges); staring from Line 2, node demands are written as n
integer numbers, the i-th number is the demand at node i; demands are followed by
m lines with arc parameters, the i-th of these lines contains 5 numbers, respectively,
the head, tail, capacity, fixed cost, and cost of arc i. Our test example of Figure A.2
is described in the file ”grid.txt” which can be found in the folder

$MIPDIR/examples/mipshell/fcfn/tests

reserved for our FCFN application.

Listing A.8: Fixed Charge Network Flows: file fcnf.cpp (Part 2),

void Cfcnf::ReadNet(const char *fileName)
{

int n,m;
std::ifstream fin(fileName);
if (!fin.is open()) {

throw CFileException(”ReadNet”,fileName);
}
fin >> n >> m;
m iVertNum=n; m iEdgeNum=m;
m ipTail = new(std::nothrow) int[5*m+n];
if (!m ipTail) {

throw CMemoryException(”Cfcnf::ReadNet”);
}
m ipDemand=(m ipCost=(m ipFixedCost= (m ipCapacity=

(m ipHead = m ipTail+m)+m)+m)+m)+m;
for (int i=0; i < n; ++i) {
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fin >> m ipDemand[i];
}
for (int i=0; i < m; ++i) {
fin >> m ipTail[i] >> m ipHead[i] >> m ipCapacity[i]

>> m ipFixedCost[i] ¿¿ m ipCost[i];
}
fin.close();
} // end of Cfcnf::ReadNet

The standard MIPshell-function printsol writes to an output file the values of
all the problem variables. In most cases we can write down solutions in a more
readable form. The function PrintSolution from Listing A.9 writes down only
nonzero arc flows.

Listing A.9: Fixed Charge Network Flows: file fcnf.cpp (Part 3)

void Cfcnf::PrintSolution(VAR VECTOR &flow)
{

int m=m iEdgeNum;
char FileName[128];
GetProblemName(FileName);
std::strcat(FileName,”.sol”);
std::ofstream fout(FileName);
if (IsSolution()) {
fout << ”Nonzero flows:\n”;
for (int e=0; e < m; ++e) {

if (getval(flow(e)) > 0.5) {
fout << ”flow(” << m ipTail[e] << ”,”

<< m ipHead[e] << ”)=”
<< getval(flow(e)) << std::endl;

}
}
}
else {
fout << ”Problem has no solution!\n”;
}
fout.close();
} // end of Cfcnf::PrintSolution
////////////////////////////
//

The function

int Cfcnf::model()
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translates IP model (A.2) into a MIPshell model. For this translation be more
transparent, we introduced a number of macroes that map the parameters of the
MIP model into the program parameters.

After the MIPshell model has been built, we call first optimize to solve the
problem, and then PrintSolution to write an optimal solution to a file.

MIPshell translates the model stored in fcnf.map into a C++ file fcnf.xyz
which is included into fcnf.cpp.

Listing A.10: Fixed Charge Network Flows: file fcnf.cpp

// macros for improving readability
#define t(e) m ipTail[e]
#define h(e) m ipHead[e]
#define c(e) m ipCost[e]
#define f(e) m ipFixedCost[e]
#define u(e) m ipCapacity[e]
#define d(v) m ipDemand[v]

int Cfcnf::model()
{

int v,e, n=m iVertNum, m=m iEdgeNum;
VAR VECTOR x(”x”,REAL GE,m);
VAR VECTOR y(”y”,BIN,m);

minimize(sum(e in [0,m)) (f(e)*y(e) + c(e)*x(e)));
forall(v in [0,n))

sum(e in [0,m): h(e)==v) x(e) - sum(e in [0,m): t(e)==v) x(e) == d(v);

forall(e in [0,m))
x(e) <= u(e)*y(e);

optimize();
PrintSolution(x);
}
// end of Cfcnf::model

Our test example of Figure A.2 is described in the file ”grid.txt” which can
be found in the folder

$MIPDIR/examples/mipcl/fcfn

reserved for our FCFN application.
After compiling and then running our test program with input parameter set to

”grid.txt”, we get the answer written into the file named ”grid.txt.sol”,
and depicted in Figure A.3.
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Figure A.3: Solution to instance of Figure A.2

A.9 MIPshell Console Applications

In this section we show how to build a MipConsoleAppWz application in Microsoft
Visual Studio .Net using. We will solve problem (??). Please follow the instruc-
tions below to get at the end the problem solved.

1. Click: File→ New→ Projects

1.1. Project name: type in ”prodmix”

1.2. Location: choose a directory for the application

1.3. Click on ”MIP Console Application”

1.4. Do not check the ”Check Box”, click on ”Finish”

1.5. Click again on ”OK”

2. Click on ”FileView” to see four files created by Application Wizard:

• main.cpp

• prodmix.h

• prodmix.cpp

• prodmi[.mod
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3. Open the ”prodmix.mod” file which contents is as below:

#include ”prodmix.h”

int model()
{

// TODO: Add here code for your model
}

4. In place of the ”TODO” line, type in the same code as in Listing A.2.

5. Compile and run the program.

6. To see the result, open the file prodmix.sol.

A.9.1 MIP-MFC Applications

If you want to develop an MFC based application, just choose MIP-MFC App-
Wizard (exe) + MIP to create the skeleton application with the following addi-
tional features (as compared to the skeleton application created by MFC App-
Wizard (exe)):

• two libraries, mipdll.lib and mipshell.lib, added to project library list;

• custom build step to process .mod files;

• include directories for MIPCL and MIPshell;

• skeleton for new problem class derived from CProblem (see files

”C”+Name+”Mod.h” and ”C”+Name+”Mod.mod”

where Name is project name).
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