Графы

H.H. Писарук pisaruk@yandex.by

Экономический факультет Белорусский государственный университет

Минск - 2015

План лекции

- 1 Графы
 - Деревья
 - Поиск по графу
- Примеры самых известных задач теории графов
 - Эйлеровы и гамильтоновы циклы
 - Клики, раскраска и укладка графов

- ullet Графом называется пара G=(V,E),
- где V конечное множество, элементы которого называются вершинами,
- а E это множество pebep, каждое из которых представляется парой (v, w) вершин из V.
- Порядок следования вершин не имеет значения: пары (v, w) и (w, v) задают одно и то же ребро.
- Если $e = (v, w) \in E$, то говорят, что вершины v и w *смежены*, и что ребро e *инцидентно* вершинам v и w
- Ственью вершины v, обозначается $\deg(v)$, в графе G называется количество инцидентных ей ребер.
- Упраженение. Докажите что сумма степеней всех вершин равна удвоенному числу ребер: $\sum_{v \in V} \deg(v) = 2 \cdot |E|$.
- Это равенство известно как лемма о рукопожатиях:
- количество рукопожатий, сделанных всеми гостями на приеме, четно.

- Γ рафом называется пара G = (V, E),
- ullet где V конечное множество, элементы которого называются вершинами,
- а E это множество ребер, каждое из которых
- Порядок следования вершин не имеет значения: пары
- Если $e = (v, w) \in E$, то говорят, что вершины v и w
- Степенью вершины v, обозначается deg(v), в графе G
- Упраженение. Докажите что сумма степеней всех вершин
- Это равенство известно как лемма о рукопожатиях:
- количество рукопожатий, сделанных всеми гостями на

- Γ рафом называется пара G = (V, E),
- ullet где V конечное множество, элементы которого называются вершинами,
- ullet а E это множество pe be p, каждое из которых представляется парой (v,w) вершин из V.
- Порядок следования вершин не имеет значения: пары (v, w) и (w, v) задают одно и то же ребро.
- Если $e = (v, w) \in E$, то говорят, что вершины v и w смежсны, и что ребро e иниидентно вершинам v и w
- Ственью вершины v, обозначается $\deg(v)$, в графе G называется количество инцидентных ей ребер.
- Упраженение. Докажите что сумма степеней всех вершин равна удвоенному числу ребер: $\sum_{v \in V} \deg(v) = 2 \cdot |E|$.
- Это равенство известно как лемма о рукопожатиях:
- количество рукопожатий, сделанных всеми гостями на приеме, *четно*.

- Γ рафом называется пара G = (V, E),
- ullet где V конечное множество, элементы которого называются вершинами,
- \bullet а E это множество *ребер*, каждое из которых представляется парой (v, w) вершин из V.
- Порядок следования вершин не имеет значения: пары (v,w) и (w,v) задают одно и то же ребро.
- Если $e = (v, w) \in E$, то говорят, что вершины v и w
- Степенью вершины v, обозначается deg(v), в графе G
- Упраженение. Докажите что сумма степеней всех вершин
- Это равенство известно как лемма о рукопожатиях:
- количество рукопожатий, сделанных всеми гостями на

- Γ рафом называется пара G = (V, E),
- ullet где V конечное множество, элементы которого называются вершинами,
- а E это множество peбep, каждое из которых представляется парой (v, w) вершин из V.
- Порядок следования вершин не имеет значения: пары (v, w) и (w, v) задают одно и то же ребро.
- Если $e = (v, w) \in E$, то говорят, что вершины v и w *смежены*, и что ребро e *инцидентно* вершинам v и w.
- Ственью вершины v, обозначается $\deg(v)$, в графе G называется количество инцидентных ей ребер.
- Упраженение. Докажите что сумма степеней всех вершин равна удвоенному числу ребер: $\sum_{v \in V} \deg(v) = 2 \cdot |E|$.
- Это равенство известно как лемма о рукопожатиях:
- количество рукопожатий, сделанных всеми гостями на приеме, *четно*.

- Γ рафом называется пара G = (V, E),
- где V конечное множество, элементы которого называются вершинами,
- а E это множество peбep, каждое из которых представляется парой (v, w) вершин из V.
- Порядок следования вершин не имеет значения: пары (v, w) и (w, v) задают одно и то же ребро.
- Если $e = (v, w) \in E$, то говорят, что вершины v и w смежны, и что ребро e иниидентно вершинам v и w.
- Ственью вершины v, обозначается $\deg(v)$, в графе G называется количество инцидентных ей ребер.
- Упраженение. Докажите что сумма степеней всех вершин равна удвоенному числу ребер: $\sum_{v \in V} \deg(v) = 2 \cdot |E|$.
- Это равенство известно как лемма о рукопожатиях:
- количество рукопожатий, сделанных всеми гостями на приеме, четно.

- Γ рафом называется пара G = (V, E),
- где V конечное множество, элементы которого называются вершинами,
- а E это множество peбep, каждое из которых представляется парой (v, w) вершин из V.
- Порядок следования вершин не имеет значения: пары (v, w) и (w, v) задают одно и то же ребро.
- Если $e = (v, w) \in E$, то говорят, что вершины v и w смежны, и что ребро e иниидентно вершинам v и w.
- Ственью вершины v, обозначается $\deg(v)$, в графе G называется количество инцидентных ей ребер.
- Упраженение. Докажите что сумма степеней всех вершин равна удвоенному числу ребер: $\sum_{v \in V} \deg(v) = 2 \cdot |E|$.
- Это равенство известно как лемма о рукопожатиях:
- количество рукопожатий, сделанных всеми гостями на приеме, *четно*.

- Γ рафом называется пара G = (V, E),
- ullet где V конечное множество, элементы которого называются вершинами,
- а E это множество peбep, каждое из которых представляется парой (v, w) вершин из V.
- Порядок следования вершин не имеет значения: пары (v, w) и (w, v) задают одно и то же ребро.
- Если $e = (v, w) \in E$, то говорят, что вершины v и w смежны, и что ребро e иниидентно вершинам v и w.
- Ственью вершины v, обозначается $\deg(v)$, в графе G называется количество инцидентных ей ребер.
- Упраженение. Докажите что сумма степеней всех вершин равна удвоенному числу ребер: $\sum_{v \in V} \deg(v) = 2 \cdot |E|$.
- Это равенство известно как лемма о рукопожатиях:
- количество рукопожатий, сделанных всеми гостями на приеме, четно.

- Γ рафом называется пара G = (V, E),
- где V конечное множество, элементы которого называются вершинами,
- а E это множество peбep, каждое из которых представляется парой (v, w) вершин из V.
- Порядок следования вершин не имеет значения: пары (v, w) и (w, v) задают одно и то же ребро.
- Если $e = (v, w) \in E$, то говорят, что вершины v и w смежны, и что ребро e иниидентно вершинам v и w.
- Ственью вершины v, обозначается $\deg(v)$, в графе G называется количество инцидентных ей ребер.
- Упраженение. Докажите что сумма степеней всех вершин равна удвоенному числу ребер: $\sum_{v \in V} \deg(v) = 2 \cdot |E|$.
- Это равенство известно как лемма о рукопожатиях:
- количество рукопожатий, сделанных всеми гостями на приеме, *четно*.

Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством ребер

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

изображается следующим образом:

Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством ребер

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

изображается следующим образом:

Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством ребер

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

изображается следующим образом:

Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством ребер

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

изображается следующим образом:

Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, \frac{3}{3}, 4\}$

и множеством ребер

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

изображается следующим образом:

Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством ребер

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

изображается следующим образом:

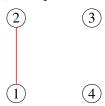
Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством ребер

$$E = \{ (1,2), (1,3), (1,4), (2,3), (3,4) \}$$

изображается следующим образом:



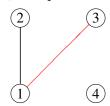
Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством ребер

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

изображается следующим образом:



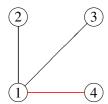
Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством ребер

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

изображается следующим образом:



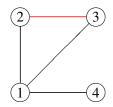
Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством ребер

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

изображается следующим образом:



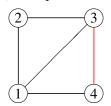
Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством ребер

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

изображается следующим образом:



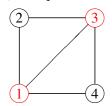
Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством ребер

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

изображается следующим образом:



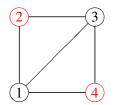
Графы небольшого размера удобно представлять рисунком на плоскости.

Например, граф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством ребер

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,4)\}$$

изображается следующим образом:



- Ориентированным графом (орграфом) называется пара G = (V, E),
- \bullet где V конечное множество вершин,
- \bullet а E это множество упорядоченных пар вершин.
- Теперь элементы e = (v, w) множества E называются ∂y гамu.
- Также говорят, что дуга e = (v, w) выходит из вершины v и входит в вершину w.
- Степенью исхода вершины v, обозначается $\operatorname{outdeg}(v)$, называется количество дуг, выходящих из v.
- *Степенью захода* вершины v, обозначается indeg(v), называется количество дуг, входящих в v.

- Ориентированным графом (орграфом) называется пара G = (V, E),
- ullet где V конечное множество вершин,
- \bullet а E это множество упорядоченных пар вершин.
- Теперь элементы e = (v, w) множества E называются ∂y гамu.
- Также говорят, что дуга e = (v, w) выходит из вершины v и входит в вершину w.
- Степенью исхода вершины v, обозначается $\operatorname{outdeg}(v)$, называется количество дуг, выходящих из v.
- Степенью захода вершины v, обозначается indeg(v), называется количество дуг, входящих в v.

- Ориентированным графом (орграфом) называется пара G = (V, E),
- \bullet где V конечное множество вершин,
- ullet а E- это множество упорядоченных пар вершин.
- Теперь элементы e = (v, w) множества E называются ∂y гамu.
- Также говорят, что дуга e = (v, w) выходит из вершины v и входит в вершину w.
- Степенью исхода вершины v, обозначается outdeg(v), называется количество дуг, выходящих из v.
- *Степенью захода* вершины v, обозначается indeg(v), называется количество дуг, входящих в v.

- Ориентированным графом (орграфом) называется пара G = (V, E),
- \bullet где V конечное множество вершин,
- ullet а E- это множество упорядоченных пар вершин.
- Теперь элементы e = (v, w) множества E называются ∂y гамu.
- Также говорят, что дуга e = (v, w) выходит из вершины v и входит в вершину w.
- Степенью исхода вершины v, обозначается $\operatorname{outdeg}(v)$, называется количество дуг, выходящих из v.
- *Степенью захода* вершины v, обозначается indeg(v), называется количество дуг, входящих в v.

- Ориентированным графом (орграфом) называется пара G = (V, E),
- \bullet где V конечное множество вершин,
- ullet а E- это множество упорядоченных пар вершин.
- Теперь элементы e = (v, w) множества E называются ∂y гамu.
- Также говорят, что дуга e = (v, w) выходит из вершины v и входит в вершину w.
- Степенью исхода вершины v, обозначается $\operatorname{outdeg}(v)$, называется количество дуг, выходящих из v.
- *Степенью захода* вершины v, обозначается indeg(v), называется количество дуг. входящих в v.

- Ориентированным графом (орграфом) называется пара G = (V, E),
- \bullet где V конечное множество вершин,
- ullet а E- это множество упорядоченных пар вершин.
- Теперь элементы e = (v, w) множества E называются ∂y гамu.
- Также говорят, что дуга e = (v, w) выходит из вершины v и входит в вершину w.
- Степенью исхода вершины v, обозначается $\operatorname{outdeg}(v)$, называется количество дуг, выходящих из v.
- *Степенью захода* вершины v, обозначается indeg(v), называется количество дуг, входящих в v.

- Ориентированным графом (орграфом) называется пара G = (V, E),
- ullet где V конечное множество вершин,
- ullet а E- это множество упорядоченных пар вершин.
- Теперь элементы e = (v, w) множества E называются ∂y гамu.
- Также говорят, что дуга e = (v, w) выходит из вершины v и входит в вершину w.
- Степенью исхода вершины v, обозначается $\operatorname{outdeg}(v)$, называется количество дуг, выходящих из v.
- *Степенью захода* вершины v, обозначается indeg(v), называется количество дуг, входящих в v.

Нарисуем орграф G=(V,E) с множеством вершин $V=\{1,2,3,4\}$ и множеством дуг $E=\{(1,2),(1,3),(1,4),(2,3),(3,2),(4,1)\}.$

Нарисуем орграф
$$G = (V, E)$$
 с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством дуг

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,2), (4,1)\}.$$

 $\widehat{1}$

Нарисуем орграф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством дуг

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,2), (4,1)\}.$$

 $\widehat{1}$

Нарисуем орграф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

и множеством дуг

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,2), (4,1)\}.$$

(2)

(3)

(1)

Нарисуем орграф G = (V, E) с множеством вершин

$$V = \{1, 2, 3, 4\}$$

и множеством дуг

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,2), (4,1)\}.$$

(2)

(3)

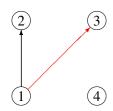
Нарисуем орграф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

$$E = \{ (1,2), (1,3), (1,4), (2,3), (3,2), (4,1) \}.$$



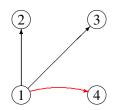
Нарисуем орграф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,2), (4,1)\}.$$



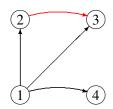
Нарисуем орграф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,2), (4,1)\}.$$



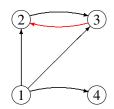
Нарисуем орграф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,2), (4,1)\}.$$



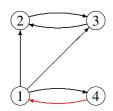
Нарисуем орграф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,2), (4,1)\}.$$



Нарисуем орграф G = (V, E) с множеством вершин $V = \{1, 2, 3, 4\}$

$$E = \{(1,2), (1,3), (1,4), (2,3), (3,2), (4,1)\}.$$

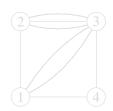


Мультиграфы

Иногда полезно рассматривать мультиграфы,

т. е. графы (орграфы) с кратными (или параллельными) ребрами (дугами).

Пример мультиграфа:



Мультиграфы

Иногда полезно рассматривать мультиграфы

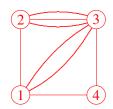
т. е. графы (орграфы) с кратными (или параллельными) ребрами (дугами).

Пример мультиграфа:

Мультиграфы

Иногда полезно рассматривать *мультиграфы*, т. е. графы (орграфы) с кратными (или параллельными) ребрами (дугами).

Пример мультиграфа:



- - $\bar{V} \subset V$.
 - ullet и $ar{E}\subseteq E$.
- Подграфом графа G = (V, E), порожденным множеством вершин $S \subseteq V$, называется подграф $G(S) \stackrel{\text{def}}{=} (S, E(S, S))$,
- где $E(X,Y)\stackrel{\mathrm{def}}{=}\{(v,w)\in E:\ v\in X,\ w\in Y\}$ для $X,Y\subseteq V.$

- Граф $\bar{G}=(\bar{V},\bar{E})$ называется $nodepa \phi o M$ графа G=(V,E),если
 - $\bar{V} \subseteq V$,
 - и $\bar{E} \subseteq E$.
- Подграфом графа G = (V, E), порожденным множеством вершин $S \subseteq V$, называется подграф $G(S) \stackrel{\text{def}}{=} (S, E(S, S))$,
- где $E(X,Y) \stackrel{\mathrm{def}}{=} \{(v,w) \in E: v \in X, w \in Y\}$ для $X,Y \subseteq V.$

- Граф $\bar{G}=(\bar{V},\bar{E})$ называется nodepaфом графа G=(V,E),если
 - $\bar{V} \subseteq V$,
 - ullet и $ar{E}\subseteq E$.
- Подграфом графа G = (V, E), порожденным множеством вершин $S \subseteq V$, называется подграф $G(S) \stackrel{\text{def}}{=} (S, E(S, S))$,
- где $E(X,Y) \stackrel{\mathrm{def}}{=} \{(v,w) \in E: v \in X, w \in Y\}$ для $X,Y \subseteq V.$

- Граф $\bar{G}=(\bar{V},\bar{E})$ называется nodepaфом графа G=(V,E),если
 - $\bar{V} \subseteq V$,
 - и $\bar{E} \subseteq E$.
- Подграфом графа G = (V, E), порожденным множеством вершин $S \subseteq V$, называется подграф $G(S) \stackrel{\text{def}}{=} (S, E(S, S))$,
- где $E(X,Y) \stackrel{\text{def}}{=} \{(v,w) \in E: v \in X, w \in Y\}$ для $X,Y \subseteq V$.

- Граф $\bar{G}=(\bar{V},\bar{E})$ называется nodepaфом графа G=(V,E),если
 - $\bar{V} \subseteq V$,
 - и $\bar{E} \subseteq E$.
- Подграфом графа G = (V, E), порожденным множеством вершин $S \subseteq V$, называется подграф $G(S) \stackrel{\text{def}}{=} (S, E(S, S))$,
- ullet где $E(X,Y)\stackrel{\mathrm{def}}{=}\{(v,w)\in E:\ v\in X,\ w\in Y\}$ для $X,Y\subseteq V.$

- Последовательность вершин $P = (s = v_0, v_1, \dots, v_k = t)$ называется *путем* из вершины s в вершину t длины k в графе (орграфе) G = (V, E),
- ullet если $(v_{i-1}, v_i) \in E$ для $i = 1, \dots, k$.
- Путь называется *простым*, если в нем нет повторяющихся вершин.
- ullet Замкнутый (когда s=t) путь называют *циклом*.
- Простой цикл не имеет повторяющихся вершин.

- Последовательность вершин $P = (s = v_0, v_1, \dots, v_k = t)$ называется *путем* из вершины s в вершину t длины k в графе (орграфе) G = (V, E),
- ullet если $(v_{i-1}, v_i) \in E$ для $i = 1, \dots, k$.
- Путь называется простым, если в нем нет повторяющихся вершин.
- ullet Замкнутый (когда s=t) путь называют *циклом*.
- Простой цикл не имеет повторяющихся вершин.

- Последовательность вершин $P = (s = v_0, v_1, \dots, v_k = t)$ называется *путем* из вершины s в вершину t длины k в графе (орграфе) G = (V, E),
- ullet если $(v_{i-1}, v_i) \in E$ для $i = 1, \dots, k$.
- Путь называется *простым*, если в нем нет повторяющихся вершин.
- ullet Замкнутый (когда s=t) путь называют *циклом*.
- Простой цикл не имеет повторяющихся вершин.

- Последовательность вершин $P = (s = v_0, v_1, \dots, v_k = t)$ называется *путем* из вершины s в вершину t длины k в графе (орграфе) G = (V, E),
- ullet если $(v_{i-1}, v_i) \in E$ для $i = 1, \dots, k$.
- Путь называется *простым*, если в нем нет повторяющихся вершин.
- ullet Замкнутый (когда s=t) путь называют *циклом*.
- Простой цикл не имеет повторяющихся вершин.

- Последовательность вершин $P = (s = v_0, v_1, \dots, v_k = t)$ называется *путем* из вершины s в вершину t длины k в графе (орграфе) G = (V, E),
- ullet если $(v_{i-1}, v_i) \in E$ для $i = 1, \dots, k$.
- Путь называется *простым*, если в нем нет повторяющихся вершин.
- Замкнутый (когда s=t) путь называют $uu\kappa nom$.
- Простой цикл не имеет повторяющихся вершин.

План лекции

- 1 Графы
 - Деревья
 - Поиск по графу

- Примеры самых известных задач теории графов
 - Эйлеровы и гамильтоновы циклы
 - Клики, раскраска и укладка графов

- Граф называется *связным*, если между любыми его двумя вершинами имеется путь.
- Дерево это связный граф без циклов.
- Лес это граф без циклов (или ациклический граф).
- Можно также сказать, что лес это множество вершинно непересекающихся деревьев.

Теорема 1

- Отражения образования праводительный праводительных праводител
- igoplus G cвязный граф c |V| 1 ребрами;
- G не содержит циклов, но при добавлении любого нового ребра к G в нем появится единственный циклов.

- Граф называется *связным*, если между любыми его двумя вершинами имеется путь.
- Дерево это связный граф без циклов.
- Лес это граф без циклов (или ациклический граф).
- Можно также сказать, что лес это множество вершинно непересекающихся деревьев.

Теорема 1

- G является деревом.
- \bigcirc G cвязный граф c |V| 1 ребрами;
- G не содержит циклов, но при добавлении любого нового ребра к G в нем появится единственный цик

- Граф называется *связным*, если между любыми его двумя вершинами имеется путь.
- Дерево это связный граф без циклов.
- Лес это граф без циклов (или ациклический граф).
- Можно также сказать, что лес это множество вершинно непересекающихся деревьев.

Теорема 1

- G является деревом;
- \bigcirc G cвязный граф c |V| 1 ребрами;
- G не содержит циклов, но при добавлении любого нового ребра к G в нем появится единственный циклов.

- Граф называется *связным*, если между любыми его двумя вершинами имеется путь.
- Дерево это связный граф без циклов.
- Лес это граф без циклов (или ациклический граф).
- Можно также сказать, что лес это множество вершинно непересекающихся деревьев.

Теорема 1

- G является деревом;
- \bigcirc G cвязный граф c |V| 1 ребрами;
- G не содержит циклов, но при добавлении любого нового ребра к G в нем появится единственный циклов.

- Граф называется *связным*, если между любыми его двумя вершинами имеется путь.
- Дерево это связный граф без циклов.
- Лес это граф без циклов (или ациклический граф).
- Можно также сказать, что лес это множество вершинно непересекающихся деревьев.

Теорема 1

- G является деревом;
- $oldsymbol{0}$ G связный граф c |V| 1 ребрами;
- (3) G не содержит циклов, но при добавлении любого нового ребра к G в нем появится единственный цик.

- Граф называется *связным*, если между любыми его двумя вершинами имеется путь.
- Дерево это связный граф без циклов.
- Лес это граф без циклов (или ациклический граф).
- Можно также сказать, что лес это множество вершинно непересекающихся деревьев.

Теорема 1

- **1** *G* является деревом;
- $oldsymbol{0}$ G связный граф c |V| 1 ребрами;
- (3) G не содержит циклов, но при добавлении любого нового ребра к G в нем появится единственный цикл

- Граф называется *связным*, если между любыми его двумя вершинами имеется путь.
- Дерево это связный граф без циклов.
- Лес это граф без циклов (или ациклический граф).
- Можно также сказать, что лес это множество вершинно непересекающихся деревьев.

Теорема 1

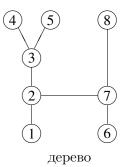
- **1** *G* является деревом;
- $oldsymbol{2}$ G cвязный cраф c |V| 1 pебрами;

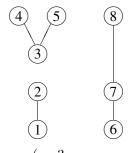
- Граф называется *связным*, если между любыми его двумя вершинами имеется путь.
- Дерево это связный граф без циклов.
- Лес это граф без циклов (или ациклический граф).
- Можно также сказать, что лес это множество вершинно непересекающихся деревьев.

Теорема 1

- **1** *G* является деревом;
- $m{Q}$ G связный граф c |V| 1 ребрами;
- $oldsymbol{3}$ G не содержит циклов, но при добавлении любого нового ребра к G в нем появится единственный цикл.

Примеры деревьев





- Покрывающим (или остовным) деревом) графа G = (V, E) называется
- ullet такой его подграф $T=(V,\bar{E})$ ($\bar{E}\subseteq E$), который является деревом.
- В задаче о минимальном остовном дереве
- в графе G = (V, E), ребрам $(v, w) \in E$ которого приписаны стоимости c(v, w),
- ullet нужно найти остовное дерево $T = (V, \bar{E}),$ у которого
- сумма стоимостей его ребер $\sum_{(v,w)\in \bar{E}} c(v,w)$ минимальна.

- Покрывающим (или остовным) деревом) графа G = (V, E) называется
- \bullet такой его подграф $T=(V,\bar{E})$ $(\bar{E}\subseteq E),$ который является деревом.
- В задаче о минимальном остовном дереве
- в графе G = (V, E), ребрам $(v, w) \in E$ которого приписаны стоимости c(v, w),
- ullet нужно найти остовное дерево $T = (V, \bar{E}),$ у которого
- ullet сумма стоимостей его ребер $\sum_{(v,w)\in \bar{E}}c(v,w)$ минимальна.

- Покрывающим (или остовным) деревом) графа G = (V, E) называется
- такой его подграф $T=(V,\bar{E})$ $(\bar{E}\subseteq E),$ который является деревом.
- В задаче о минимальном остовном дереве
- в графе G = (V, E), ребрам $(v, w) \in E$ которого приписаны стоимости c(v, w),
- ullet нужно найти остовное дерево $T = (V, \bar{E}),$ у которого
- ullet сумма стоимостей его ребер $\sum_{(v,w)\in \bar{E}}c(v,w)$ минимальна.

- Покрывающим (или остовным) деревом) графа G = (V, E) называется
- \bullet такой его подграф $T=(V,\bar{E})$ $(\bar{E}\subseteq E),$ который является деревом.
- В задаче о минимальном остовном дереве
- в графе G = (V, E), ребрам $(v, w) \in E$ которого приписаны стоимости c(v, w),
- ullet нужно найти остовное дерево $T = (V, \bar{E}),$ у которого
- ullet сумма стоимостей его ребер $\sum_{(v,w)\in \bar{E}}c(v,w)$ минимальна.

- Покрывающим (или остовным) деревом) графа G = (V, E) называется
- такой его подграф $T=(V,\bar{E})$ $(\bar{E}\subseteq E),$ который является деревом.
- В задаче о минимальном остовном дереве
- в графе G = (V, E), ребрам $(v, w) \in E$ которого приписаны стоимости c(v, w),
- ullet нужно найти остовное дерево $T = (V, \bar{E}),$ у которого
- ullet сумма стоимостей его ребер $\sum_{(v,w)\in \bar{E}}c(v,w)$ минимальна.

- Покрывающим (или остовным) деревом) графа G = (V, E) называется
- такой его подграф $T=(V,\bar{E})$ $(\bar{E}\subseteq E),$ который является деревом.
- В задаче о минимальном остовном дереве
- в графе G = (V, E), ребрам $(v, w) \in E$ которого приписаны стоимости c(v, w),
- ullet нужно найти остовное дерево $T=(V,ar{E}),$ у которого
- \bullet сумма стоимостей его ребер $\sum_{(v,w)\in \bar{E}} c(v,w)$ минимальна.

Алгоритм Прима

- Bxod : граф $\mathit{G} = (V, E)$, функция стоимостей $c: E \to \mathbb{R}$.
- Выход: функция parent : $V \to V$, что $\bar{E} = \{(parent(v), v) : v \in V, parent(v) \neq v\}$ есть множество ребер минимального остовного дерева.
- *Инициализация*: выбрать произвольную вершину $s \in S$, положить

```
• S = \{s\}, parent(s) = s;

• parent(v) = nil и d(v) = \infty для всех v \in V \setminus \{s\};

• parent(v) = s, d(v) = c(s, v) для всех (s, v) \in E(s, V)
```

- Пока $S \neq V$,
 - выбрать $v \in \arg\min_{v \in V \setminus S} d(w)$,
 - положить $S := S \cup \{v\}$
 - и для всех $(v, w) \in E(v, V \setminus S)$, если d(w) > d(v) + c(v, w), положить parent(w) = v и d(w) = d(v) + c(v, w).

- Bxod : граф G = (V, E), функция стоимостей $c : E \to \mathbb{R}$.
- Выход: функция parent : $V \to V$, что $\bar{E} = \{(parent(v), v) : v \in V, parent(v) \neq v\}$ есть множество ребер минимального остовного дерева.
- *Инициализация*: выбрать произвольную вершину $s \in S$, положить
 - \bullet S = {s}, parent(s) = s:
 - $parent(v) = \mathbf{nil} \ \mathsf{H} \ d(v) = \infty$ для $\mathsf{Bcex} \ v \in V \setminus \{s\};$
 - parent(v) = s, d(v) = c(s, v) для $bcex(s, v) \in E(s, V)$.
- Пока $S \neq V$,
 - выбрать $v \in \arg\min_{w \in V \setminus G} d(w)$,
 - положить $S := S \cup \{v\}$.
 - и для всех $(v, w) \in E(v, V \setminus S)$, если d(w) > d(v) + c(v, w), положить parent(w) = v и d(w) = d(v) + c(v, w).

- Bxod : граф G = (V, E), функция стоимостей $c : E \to \mathbb{R}$.
- Выход: функция parent : $V \to V$, что $\bar{E} = \{(parent(v), v) : v \in V, parent(v) \neq v\}$ есть множество ребер минимального остовного дерева.
- *Инициализация*: выбрать произвольную вершину $s \in S$, положить
 - $S = \{s\}, parent(s) = s;$
 - $parent(v) = \mathbf{nil} \ \mathsf{u} \ d(v) = \infty$ для $\mathsf{Bcex} \ v \in V \setminus \{s\};$
 - parent(v) = s, d(v) = c(s, v) для $bcex(s, v) \in E(s, V)$.
- Пока $S \neq V$,
 - выбрать $v \in \arg \min_{x \in \mathbb{R}^n} d(w)$,
 - положить $S := S \cup \{v\}$,
 - и для всех $(v, w) \in E(v, V \setminus S)$, если d(w) > d(v) + c(v, w), положить parent(w) = v и d(w) = d(v) + c(v, w).

- Bxod : граф G = (V, E), функция стоимостей $c : E \to \mathbb{R}$.
- Выход: функция parent : $V \to V$, что $\bar{E} = \{(parent(v), v) : v \in V, parent(v) \neq v\}$ есть множество ребер минимального остовного дерева.
- *Инициализация*: выбрать произвольную вершину $s \in S$, положить
 - $S = \{s\}, parent(s) = s;$
 - $parent(v) = \mathbf{nil} \ \mathsf{ii} \ d(v) = \infty$ для $\mathsf{Bcex} \ v \in V \setminus \{s\};$
 - parent(v) = s, d(v) = c(s, v) для $bcex(s, v) \in E(s, V)$.
- Пока $S \neq V$,
 - выбрать $v \in \arg \min_{w \in \mathbb{R}} d(w)$,
 - положить $S := S \cup \{v\}$,
 - и для всех $(v, w) \in E(v, V \setminus S)$, если d(w) > d(v) + c(v, w), положить parent(w) = v и d(w) = d(v) + c(v, w).

- Bxod : граф G = (V, E), функция стоимостей $c : E \to \mathbb{R}$.
- Выход: функция parent : $V \to V$, что $\bar{E} = \{(parent(v), v) : v \in V, parent(v) \neq v\}$ есть множество ребер минимального остовного дерева.
- Инициализация: выбрать произвольную вершину $s \in S$, положить
 - $S = \{s\}, parent(s) = s;$
 - $parent(v) = \mathbf{nil}$ и $d(v) = \infty$ для $\mathbf{Bcex}\ v \in V \setminus \{s\};$
 - parent(v) = s, d(v) = c(s, v) для $bcex(s, v) \in E(s, V)$.
- Пока $S \neq V$,
 - выбрать $v \in \arg\min_{w \in \mathbb{R}} d(w)$,
 - положить $S := S \cup \{v\}$,
 - и для всех $(v, w) \in E(v, V \setminus S)$, если d(w) > d(v) + c(v, w), положить parent(w) = v и d(w) = d(v) + c(v, w).

- Bxod : граф G = (V, E), функция стоимостей $c : E \to \mathbb{R}$.
- Выход: функция parent : $V \to V$, что $\bar{E} = \{(parent(v), v) : v \in V, parent(v) \neq v\}$ есть множество ребер минимального остовного дерева.
- Инициализация: выбрать произвольную вершину $s \in S$, положить
 - $S = \{s\}, parent(s) = s;$
 - $parent(v) = \mathbf{nil}$ и $d(v) = \infty$ для $\mathbf{Bcex}\ v \in V \setminus \{s\};$
 - parent(v) = s, d(v) = c(s, v) для $bcex(s, v) \in E(s, V)$.
- Пока $S \neq V$,
 - выбрать $v \in \arg \min_{n \in \mathbb{N}} d(w)$,
 - положить $S := S \cup \{v\}$,
 - и для всех $(v, w) \in E(v, V \setminus S)$, если d(w) > d(v) + c(v, w), положить parent(w) = v и d(w) = d(v) + c(v, w).

- Bxod : граф G = (V, E), функция стоимостей $c : E \to \mathbb{R}$.
- Выход: функция parent : $V \to V$, что $\bar{E} = \{(parent(v), v) : v \in V, parent(v) \neq v\}$ есть множество ребер минимального остовного дерева.
- *Инициализация*: выбрать произвольную вершину $s \in S$, положить
 - $S = \{s\}, parent(s) = s;$
 - $parent(v) = \mathbf{nil}$ и $d(v) = \infty$ для $\mathbf{Bcex}\ v \in V \setminus \{s\};$
 - parent(v) = s, d(v) = c(s, v) для $bcex(s, v) \in E(s, V)$.
- Пока $S \neq V$,
 - выбрать $v \in \arg\min_{v \in V \setminus S} d(w)$,
 - положить $S := S \cup \{v\}$,
 - и для всех $(v, w) \in E(v, V \setminus S)$, если d(w) > d(v) + c(v, w), положить parent(w) = v и d(w) = d(v) + c(v, w).

- $Bxo\partial$: граф G=(V,E), функция стоимостей $c:E\to\mathbb{R}$.
- Выход: функция parent : $V \to V$, что $\bar{E} = \{(parent(v), v) : v \in V, parent(v) \neq v\}$ есть множество ребер минимального остовного дерева.
- *Инициализация*: выбрать произвольную вершину $s \in S$, положить
 - $S = \{s\}, parent(s) = s;$
 - $parent(v) = \mathbf{nil} \ \text{и} \ d(v) = \infty \ \text{для всех } v \in V \setminus \{s\};$
 - parent(v) = s, d(v) = c(s, v) для $bcex(s, v) \in E(s, V)$.
- Пока $S \neq V$,
 - выбрать $v \in \arg\min_{v \in V \setminus S} d(w)$,
 - положить $S := S \cup \{v\}$,
 - и для всех $(v, w) \in E(v, V \setminus S)$, если d(w) > d(v) + c(v, w), положить parent(w) = v и d(w) = d(v) + c(v, w).

- Bxod : граф G = (V, E), функция стоимостей $c : E \to \mathbb{R}$.
- Выход: функция parent : $V \to V$, что $\bar{E} = \{(parent(v), v) : v \in V, parent(v) \neq v\}$ есть множество ребер минимального остовного дерева.
- *Инициализация*: выбрать произвольную вершину $s \in S$, положить
 - $S = \{s\}, parent(s) = s;$
 - $parent(v) = \mathbf{nil}$ и $d(v) = \infty$ для $\mathbf{Bcex}\ v \in V \setminus \{s\};$
 - parent(v) = s, d(v) = c(s, v) для $bcex(s, v) \in E(s, V)$.
- Пока $S \neq V$,
 - выбрать $v \in \arg\min_{v \in V \setminus S} d(w)$,
 - положить $S := S \cup \{v\}$,
 - и для всех $(v, w) \in E(v, V \setminus S)$, если d(w) > d(v) + c(v, w), положить parent(w) = v и d(w) = d(v) + c(v, w).

- Bxod : граф G = (V, E), функция стоимостей $c : E \to \mathbb{R}$.
- Выход: функция parent : $V \to V$, что $\bar{E} = \{(parent(v), v) : v \in V, parent(v) \neq v\}$ есть множество ребер минимального остовного дерева.
- *Инициализация*: выбрать произвольную вершину $s \in S$, положить
 - $S = \{s\}, parent(s) = s;$
 - $parent(v) = \mathbf{nil} \ \text{и} \ d(v) = \infty \ \text{для всех } v \in V \setminus \{s\};$
 - parent(v) = s, d(v) = c(s, v) для $bcex(s, v) \in E(s, V)$.
- Пока $S \neq V$,
 - выбрать $v \in \arg\min_{v \in V \setminus S} d(w)$,
 - положить $S := S \cup \{v\}$,
 - и для всех $(v,w) \in E(v,V\setminus S)$, если d(w)>d(v)+c(v,w), положить parent(w)=v и d(w)=d(v)+c(v,w).

- ullet Пусть вершины графа G = (V, E) представляют населенные пункты,
- а ребра грунтовые дороги, соединяющие эти населенные пункты.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это и есть задача о минимальном остовном дереве в сети (G,c).

- Пусть вершины графа G = (V, E) представляют населенные пункты,
- а ребра грунтовые дороги, соединяющие эти населенные пункты.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это и есть задача о минимальном остовном дереве в сети (G,c).

- Пусть вершины графа G = (V, E) представляют населенные пункты,
- а ребра грунтовые дороги, соединяющие эти населенные пункты.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это и есть задача о минимальном остовном дереве в сети (G,c).

- Пусть вершины графа G = (V, E) представляют населенные пункты,
- а ребра грунтовые дороги, соединяющие эти населенные пункты.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это и есть задача о минимальном остовном дереве в сети (G,c).

- Пусть вершины графа G = (V, E) представляют населенные пункты,
- а ребра грунтовые дороги, соединяющие эти населенные пункты.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это и есть задача о минимальном остовном дереве в сети (G,c).

- Пусть вершины графа G = (V, E) представляют населенные пункты,
- а ребра грунтовые дороги, соединяющие эти населенные пункты.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это и есть задача о минимальном остовном дереве в сети (G,c).

- Пусть вершины графа G = (V, E) представляют населенные пункты,
- а ребра грунтовые дороги, соединяющие эти населенные пункты.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это и есть задача о минимальном остовном дереве в сети (G, c).

- Задача построения кратчайшей связующей сети дорог на практике сложнее и не сводится к поиску минимального остовного дерева.
- Проблема в том, что вершины графа должны представлять не только населенные пункты,
- но и перекрестки дорог.
- Пусть теперь вершины графа G = (V, E) представляют населенные пункты $S \subseteq V$ и перекрестки дорог $V \setminus S$,
- а ребра грунтовые дороги, соединяющие эти населенные пункты и перекрестки.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы

- Задача построения кратчайшей связующей сети дорог на практике сложнее и не сводится к поиску минимального остовного дерева.
- Проблема в том, что вершины графа должны представлять не только населенные пункты,
- но и перекрестки дорог.
- Пусть теперь вершины графа G = (V, E) представляют населенные пункты $S \subseteq V$ и перекрестки дорог $V \setminus S$,
- а ребра грунтовые дороги, соединяющие эти населенные пункты и перекрестки.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы

- Задача построения кратчайшей связующей сети дорог на практике сложнее и не сводится к поиску минимального остовного дерева.
- Проблема в том, что вершины графа должны представлять не только населенные пункты,
- но и перекрестки дорог.
- Пусть теперь вершины графа G = (V, E) представляют населенные пункты $S \subseteq V$ и перекрестки дорог $V \setminus S$,
- а ребра грунтовые дороги, соединяющие эти населенные пункты и перекрестки.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы

- Пусть теперь вершины графа G=(V,E) представляют населенные пункты $S\subseteq V$ и перекрестки дорог $V\setminus S$,
- а ребра грунтовые дороги, соединяющие эти населенные пункты и перекрестки.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это есть задача поиска в графе G дерева $T = (\bar{V}, \bar{E})$ минимальной стоимости, которое «покрывает» все населенные пункты, т. е. $S \subseteq \bar{V}$.
- Такое дерево называется деревом Штейнера.

- Пусть теперь вершины графа G=(V,E) представляют населенные пункты $S\subseteq V$ и перекрестки дорог $V\setminus S$,
- а ребра грунтовые дороги, соединяющие эти населенные пункты и перекрестки .
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это есть задача поиска в графе G дерева $T = (\bar{V}, \bar{E})$ минимальной стоимости, которое «покрывает» все населенные пункты, т. е. $S \subseteq \bar{V}$.
- Такое дерево называется деревом Штейнера.

- Пусть теперь вершины графа G=(V,E) представляют населенные пункты $S\subseteq V$ и перекрестки дорог $V\setminus S$,
- а ребра грунтовые дороги, соединяющие эти населенные пункты и перекрестки.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это есть задача поиска в графе G дерева $T = (\bar{V}, \bar{E})$ минимальной стоимости, которое «покрывает» все населенные пункты, т. е. $S \subseteq \bar{V}$.
- Такое дерево называется деревом Штейнера.

- Пусть теперь вершины графа G=(V,E) представляют населенные пункты $S\subseteq V$ и перекрестки дорог $V\setminus S$,
- а ребра грунтовые дороги, соединяющие эти населенные пункты и перекрестки.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это есть задача поиска в графе G дерева $T = (\bar{V}, \bar{E})$ минимальной стоимости, которое «покрывает» все населенные пункты, т. е. $S \subseteq \bar{V}$.
- Такое дерево называется деревом Штейнера.

- Пусть теперь вершины графа G=(V,E) представляют населенные пункты $S\subseteq V$ и перекрестки дорог $V\setminus S$,
- а ребра грунтовые дороги, соединяющие эти населенные пункты и перекрестки.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это есть задача поиска в графе G дерева $T = (\bar{V}, \bar{E})$ минимальной стоимости, которое «покрывает» все населенные пункты, т. е. $S \subseteq \bar{V}$.
- Такое дерево называется деревом Штейнера.

- Пусть теперь вершины графа G=(V,E) представляют населенные пункты $S\subseteq V$ и перекрестки дорог $V\setminus S$,
- а ребра грунтовые дороги, соединяющие эти населенные пункты и перекрестки.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это есть задача поиска в графе G дерева $T = (\bar{V}, \bar{E})$ минимальной стоимости, которое «покрывает» все населенные пункты, т. е. $S \subseteq \bar{V}$.
- Такое дерево называется деревом Штейнера.

- Пусть теперь вершины графа G=(V,E) представляют населенные пункты $S\subseteq V$ и перекрестки дорог $V\setminus S$,
- а ребра грунтовые дороги, соединяющие эти населенные пункты и перекрестки.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это есть задача поиска в графе G дерева $T=(\bar{V},\bar{E})$ минимальной стоимости, которое «покрывает» все населенные пункты, т. е. $S\subseteq \bar{V}$.
- Такое дерево называется деревом Штейнера.

- Пусть теперь вершины графа G=(V,E) представляют населенные пункты $S\subseteq V$ и перекрестки дорог $V\setminus S$,
- а ребра грунтовые дороги, соединяющие эти населенные пункты и перекрестки.
- Для каждой грутовой дороги $(v, w) \in E$ подсчитана стоимость c(v, w) ее асфальтирования.
- Нужно за минимальную сумму денег
- заасфальтировать некоторые грунтовые дороги, чтобы
- была возможность проехать по асфальтированным дорогам из любого населенного пункта в любой другой населенный пункт.
- Это есть задача поиска в графе G дерева $T = (\bar{V}, \bar{E})$ минимальной стоимости, которое «покрывает» все населенные пункты, т. е. $S \subseteq \bar{V}$.
- Такое дерево называется деревом Штейнера.

- Орграф G = (V, E) называется ориентированным деревом (или ордеревом),
- если |E| = |V| 1
- и в каждую вершину входит не более одной дуги.
- Для $(v, w) \in E$ вершина v есть podument вершины w (пишем parent(w) = v), а w есть потомок вершины v.
- Единственная вершина r в ордереве, в которую не входят дуги, называется *корнем* (parent(r) = r).
- Вершины, из которых не выходят дуги, называются *мистыями*.

- Орграф G = (V, E) называется ориентированным деревом (или ордеревом),
- \bullet если |E| = |V| 1
- и в каждую вершину входит не более одной дуги.
- Для $(v, w) \in E$ вершина v есть podument вершины w (пишем parent(w) = v), а w есть потомок вершины v.
- Единственная вершина r в ордереве, в которую не входят дуги, называется *корнем* (parent(r) = r).
- Вершины, из которых не выходят дуги, называются листьями.

- Орграф G = (V, E) называется ориентированным деревом (или ордеревом),
- ullet если |E| = |V| 1
- и в каждую вершину входит не более одной дуги.
- Для $(v, w) \in E$ вершина v есть podument вершины w (пишем parent(w) = v), а w есть потомок вершины v.
- Единственная вершина r в ордереве, в которую не входят дуги, называется *корнем* (parent(r) = r).
- Вершины, из которых не выходят дуги, называются *мистыями*.

- Орграф G = (V, E) называется ориентированным деревом (или ордеревом),
- ullet если |E| = |V| 1
- и в каждую вершину входит не более одной дуги.
- Для $(v, w) \in E$ вершина v есть podument вершины w (пишем parent(w) = v), а w есть потомок вершины v.
- Единственная вершина r в ордереве, в которую не входят дуги, называется *корнем* (parent(r) = r).
- Вершины, из которых не выходят дуги, называются *мистыями*.

- Орграф G = (V, E) называется ориентированным деревом (или ордеревом),
- ullet если |E| = |V| 1
- и в каждую вершину входит не более одной дуги.
- Для $(v, w) \in E$ вершина v есть podument вершины w (пишем parent(w) = v), а w есть потомок вершины v.
- Единственная вершина r в ордереве, в которую не входят дуги, называется *корнем* (parent(r) = r).
- Вершины, из которых не выходят дуги, называются листьями.

- Орграф G = (V, E) называется ориентированным деревом (или ордеревом),
- ullet если |E| = |V| 1
- и в каждую вершину входит не более одной дуги.
- Для $(v, w) \in E$ вершина v есть podument вершины w (пишем parent(w) = v), а w есть потомок вершины v.
- Единственная вершина r в ордереве, в которую не входят дуги, называется *корнем* (parent(r) = r).
- Вершины, из которых не выходят дуги, называются *листьями*.

План лекции

- 1 Графы
 - Деревья
 - Поиск по графу

- 2 Примеры самых известных задач теории графов
 - Эйлеровы и гамильтоновы циклы
 - Клики, раскраска и укладка графов

- Множество, в котором задан порядок следования элементов, называют *списком*.
 - $\{x, y, z\}$ и $\{z, y, x\}$ одно и то же множество,
 - \bullet но (x, y, z) и (z, y, x) различные списки.
- Две операции над списками:
 - ullet рор(S) извлекает из списка S и возвращает один элементти
 - \bullet push(S,x) добавляет к списку S элемент x.
- Динамически изменяемый с помощью операций рор и push список называется
 - очередню, если размение запачения в конса, списка, в телеформации;
 - стеком, если разделющимог запомогна в конси стиска, и кон изпаскост интистите из конца стиска.

Очереди и стеки

- Множество, в котором задан порядок следования элементов, называют *списком*.
 - $\{x, y, z\}$ и $\{z, y, x\}$ одно и то же множество,
 - но (x, y, z) и (z, y, x) различные списки.
- Две операции над списками:
 - ullet рор(S) извлекает из списка S и возвращает один элемент;
 - \bullet push(S,x) добавляет к списку S элемент x.
- Динамически изменяемый с помощью операций рор и push список называется
 - очередью, если развидованног запаменты в конси списка.
 - *стеком*, если розд добавляет элементы в конен списка, а

- Множество, в котором задан порядок следования элементов, называют *списком*.
 - $\{x, y, z\}$ и $\{z, y, x\}$ одно и то же множество,
 - но (x, y, z) и (z, y, x) различные списки.
- Две операции над списками:
 - ullet рор(S) извлекает из списка S и возвращает один элемент
 - \bullet push(S,x) добавляет к списку S элемент x.
- Динамически изменяемый с помощью операций рор и push список называется
 - очередью, если развидованног запаменты в конси списка.
 - стеком, если розд добавляют элементы в конен списка, а

- Множество, в котором задан порядок следования элементов, называют *списком*.
 - $\{x, y, z\}$ и $\{z, y, x\}$ одно и то же множество,
 - но (x, y, z) и (z, y, x) различные списки.
- Две операции над списками:
 - \bullet pop(S) извлекает из списка S и возвращает один элемент;
 - \bullet push(S,x) добавляет к списку S элемент x.
- Динамически изменяемый с помощью операций рор и push список называется
 - очередью, если рики добиваниет элементы и конац списка,
 - стеком, если разh добавляет элементы в конец отнока, а

- Множество, в котором задан порядок следования элементов, называют *списком*.
 - $\{x, y, z\}$ и $\{z, y, x\}$ одно и то же множество,
 - но (x, y, z) и (z, y, x) различные списки.
- Две операции над списками:
 - \bullet pop(S) извлекает из списка S и возвращает один элемент;
 - \bullet push(S,x) добавляет к списку S элемент x.
- Динамически изменяемый с помощью операций рор и push список называется
 - очередью, если развидованням элементы в конец списка,
 - *стеком*, если разв добывовит оломонты в коноп санках, а
 - рор извлекает элементы из конца списка.

- Множество, в котором задан порядок следования элементов, называют *списком*.
 - $\{x, y, z\}$ и $\{z, y, x\}$ одно и то же множество,
 - но (x, y, z) и (z, y, x) различные списки.
- Две операции над списками:
 - \bullet pop(S) извлекает из списка S и возвращает один элемент;
 - \bullet push(S,x) добавляет к списку S элемент x.
- Динамически изменяемый с помощью операций рор и push список называется
 - очередью, если ризh добавляет элементы в конец списка, а рор извлекает элементы из начала списка;
 - стеком, если разh добавляет элементы в конец списка, а пор извлекает элементы из конца списка.

- Множество, в котором задан порядок следования элементов, называют *списком*.
 - $\{x, y, z\}$ и $\{z, y, x\}$ одно и то же множество,
 - \bullet но (x, y, z) и (z, y, x) различные списки.
- Две операции над списками:
 - \bullet pop(S) извлекает из списка S и возвращает один элемент;
 - \bullet push(S,x) добавляет к списку S элемент x.
- Динамически изменяемый с помощью операций рор и push список называется
 - *очередью*, если push добавляет элементы в конец списка, а рор извлекает элементы из начала списка;
 - стеком, если push добавляет элементы в конец списка, а рор извлекает элементы из конца списка.

- Множество, в котором задан порядок следования элементов, называют *списком*.
 - $\{x, y, z\}$ и $\{z, y, x\}$ одно и то же множество,
 - но (x, y, z) и (z, y, x) различные списки.
- Две операции над списками:
 - \bullet pop(S) извлекает из списка S и возвращает один элемент;
 - \bullet push(S,x) добавляет к списку S элемент x.
- Динамически изменяемый с помощью операций рор и push список называется
 - *очередью*, если push добавляет элементы в конец списка, а рор извлекает элементы из начала списка;
 - стеком, если push добавляет элементы в конец списка, а рор извлекает элементы из конца списка.

- Множество, в котором задан порядок следования элементов, называют *списком*.
 - $\{x, y, z\}$ и $\{z, y, x\}$ одно и то же множество,
 - но (x, y, z) и (z, y, x) различные списки.
- Две операции над списками:
 - \bullet pop(S) извлекает из списка S и возвращает один элемент;
 - \bullet push(S,x) добавляет к списку S элемент x.
- Динамически изменяемый с помощью операций рор и push список называется
 - *очередью*, если push добавляет элементы в конец списка, а рор извлекает элементы из начала списка;
 - *стеком*, если push добавляет элементы в конец списка, а пор извлекает элементы из конца списка

- Множество, в котором задан порядок следования элементов, называют *списком*.
 - $\{x, y, z\}$ и $\{z, y, x\}$ одно и то же множество,
 - но (x, y, z) и (z, y, x) различные списки.
- Две операции над списками:
 - \bullet pop(S) извлекает из списка S и возвращает один элемент;
 - \bullet push(S,x) добавляет к списку S элемент x.
- Динамически изменяемый с помощью операций рор и push список называется
 - очередью, если push добавляет элементы в конец списка, а рор извлекает элементы из начала списка;
 - *стеком*, если push добавляет элементы в конец списка, а рор извлекает элементы из конца списка.

- Множество, в котором задан порядок следования элементов, называют *списком*.
 - $\{x, y, z\}$ и $\{z, y, x\}$ одно и то же множество,
 - но (x, y, z) и (z, y, x) различные списки.
- Две операции над списками:
 - \bullet pop(S) извлекает из списка S и возвращает один элемент;
 - push(S,x) добавляет к списку S элемент x.
- Динамически изменяемый с помощью операций рор и push список называется
 - *очередью*, если push добавляет элементы в конец списка, а pop извлекает элементы из начала списка;
 - *стеком*, если push добавляет элементы в конец списка, а рор извлекает элементы из конца списка.

- Множество, в котором задан порядок следования элементов, называют *списком*.
 - $\{x, y, z\}$ и $\{z, y, x\}$ одно и то же множество,
 - но (x, y, z) и (z, y, x) различные списки.
- Две операции над списками:
 - \bullet pop(S) извлекает из списка S и возвращает один элемент;
 - \bullet push(S,x) добавляет к списку S элемент x.
- Динамически изменяемый с помощью операций рор и push список называется
 - *очередью*, если push добавляет элементы в конец списка, а pop извлекает элементы из начала списка;
 - *стеком*, если push добавляет элементы в конец списка, а рор извлекает элементы из конца списка.

- ullet Задан орграф G=(V,E) и вершина $s\in V.$
- \bullet Нужно найти все вершины, достижимые в G из s.
- Алгоритм:
 - Инициализация: Q = (s), parent(s) = s, parent(v) = nil для $bcex v \in V \setminus \{s\}$
 - Iloka $Q \neq \emptyset$,
 - $\circ \ \nu = pop(Q);$
 - Alms neex $(v, w) \in E(v, V)$, econ parent(w) = nil,
- После завершения работы алгоритма указатели parent(v) $(v \in V)$ задают дерево noucka.

- поиском в ширину, если Q есть очередь;
- поиском в глубину, если Q есть стек;

- Задан орграф G = (V, E) и вершина $s \in V$.
- ullet Нужно найти все вершины, достижимые в G из s.
- Алгоритм:
 - Инициализация: Q = (s),
 parent(s) = s, parent $(v) = \mathbf{nil}$ для всех $v \in V \setminus \{s\}$
 - $v = v_{mn}(\Omega)$
 - * Thus now $(v,w) \in E(v,V)$, exam parent $(w) = \min$
- После завершения работы алгоритма указатели parent(v) $(v \in V)$ задают дерево noucka.

- поиском в ширину, если Q есть очередь;
- поиском в глубину, если Q есть стек;

- Задан орграф G = (V, E) и вершина $s \in V$.
- ullet Нужно найти все вершины, достижимые в G из s.
- Алгоритм:
 - Инициализация: Q = (s), parent(s) = s, $parent(v) = \mathbf{nil}$ для $\mathbf{Bcex}\ v \in V \setminus \{s\}$.
 - Пока $Q \neq \emptyset$,
 - $\bullet \ \nu = pop(Q)$;
 - Для всех $(v,w) \in E(v,V)$, если parent(w) = nil
- После завершения работы алгоритма указатели parent(v) $(v \in V)$ задают дерево noucka.

- поиском в ширину, если Q есть очередь;
- поиском в глубину, если Q есть стек;

- Задан орграф G = (V, E) и вершина $s \in V$.
- \bullet Нужно найти все вершины, достижимые в G из s.
- Алгоритм:
 - Инициализация: Q = (s), parent(s) = s, $parent(v) = \mathbf{nil}$ для всех $v \in V \setminus \{s\}$.
 - Пока $Q \neq \emptyset$,
 - $\bullet v = pop(Q);$
 - Для всех $(v, w) \in E(v, V)$, если parent(w) = nil,
- После завершения работы алгоритма указатели parent(v) $(v \in V)$ задают $depeso\ noucka$.

- поиском в ширину, если Q есть очередь;
- *поиском в глубину*, если *Q* есть стек;

- Задан орграф G = (V, E) и вершина $s \in V$.
- ullet Нужно найти все вершины, достижимые в G из s.
- Алгоритм:
 - Инициализация: Q = (s), parent(s) = s, parent(v) = nil для $bcex v \in V \setminus \{s\}$.
 - Пока $Q \neq \emptyset$,
 - v = pop(Q);
 - Для всех $(v, w) \in E(v, V)$, если parent(w) = nil,
- После завершения работы алгоритма указатели parent(v) $(v \in V)$ задают $depeso\ noucka$.

- *поиском в ширину*, если *Q* есть очередь;
- *поиском в глубину*, если *Q* есть стек;

- Задан орграф G = (V, E) и вершина $s \in V$.
- ullet Нужно найти все вершины, достижимые в G из s.
- Алгоритм:
 - Инициализация: Q = (s), parent(s) = s, parent(v) = nil для $bcex v \in V \setminus \{s\}$.
 - Пока $Q \neq \emptyset$,
 - v = pop(Q);
 - Для всех $(v, w) \in E(v, V)$, если parent(w) = nil, полагаем parent(w) = v и выполняем push(Q, w)
- После завершения работы алгоритма указатели parent(v) $(v \in V)$ задают $depeso\ noucka$.

- *поиском в ширину*, если *Q* есть очередь;
- *поиском в глубину*, если *Q* есть стек;

- Задан орграф G = (V, E) и вершина $s \in V$.
- ullet Нужно найти все вершины, достижимые в G из s.
- Алгоритм:
 - Инициализация: Q = (s), parent(s) = s, parent(v) = nil для всех $v \in V \setminus \{s\}$.
 - Пока $Q \neq \emptyset$,
 - v = pop(Q);
 - Для всех $(v, w) \in E(v, V)$, если parent(w) = nil, полагаем parent(w) = v и выполняем push(Q, w).
- После завершения работы алгоритма указатели parent(v) $(v \in V)$ задают $depeso\ noucka.$

- поиском в ширину, если Q есть очередь;
- поиском в глубину, если Q есть стек:

- Задан орграф G = (V, E) и вершина $s \in V$.
- \bullet Нужно найти все вершины, достижимые в G из s.
- Алгоритм:
 - Инициализация: Q = (s), parent(s) = s, parent(v) = nil для всех $v \in V \setminus \{s\}$.
 - Пока $Q \neq \emptyset$,
 - v = pop(Q);
 - Для всех $(v, w) \in E(v, V)$, если parent(w) = nil, полагаем parent(w) = v и выполняем push(Q, w).
- После завершения работы алгоритма указатели parent(v) $(v \in V)$ задают $depeso\ noucka$.

- *поиском в ширину*, если *Q* есть очередь;
- *поиском в глубину*, если *Q* есть стек;

- Задан орграф G = (V, E) и вершина $s \in V$.
- \bullet Нужно найти все вершины, достижимые в G из s.
- Алгоритм:
 - Инициализация: Q = (s), parent(s) = s, parent(v) = nil для всех $v \in V \setminus \{s\}$.
 - Пока $Q \neq \emptyset$,
 - v = pop(Q);
 - Для всех $(v, w) \in E(v, V)$, если parent(w) = nil, полагаем parent(w) = v и выполняем push(Q, w).
- После завершения работы алгоритма указатели parent(v) $(v \in V)$ задают $depeso\ noucka.$

- $nouckom \ 6 \ mupuny$, если Q есть очередь;
- *поиском в глубину*, если *Q* есть стек;

- Задан орграф G = (V, E) и вершина $s \in V$.
- \bullet Нужно найти все вершины, достижимые в G из s.
- Алгоритм:
 - Инициализация: Q = (s), parent(s) = s, parent(v) = nil для $bcex v \in V \setminus \{s\}$.
 - Пока $Q \neq \emptyset$,
 - v = pop(Q);
 - Для всех $(v, w) \in E(v, V)$, если parent(w) = nil, полагаем parent(w) = v и выполняем push(Q, w).
- После завершения работы алгоритма указатели parent(v) $(v \in V)$ задают $depeso\ noucka.$

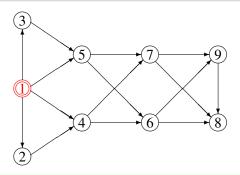
- $nouckom \ в \ mupuhy$, если Q есть очередь;
- поиском в глубину, если Q есть стек;

- Задан орграф G = (V, E) и вершина $s \in V$.
- \bullet Нужно найти все вершины, достижимые в G из s.
- Алгоритм:
 - Инициализация: Q = (s), parent(s) = s, parent(v) = nil для $bcex v \in V \setminus \{s\}$.
 - Пока $Q \neq \emptyset$,
 - v = pop(Q);
 - Для всех $(v, w) \in E(v, V)$, если parent(w) = nil, полагаем parent(w) = v и выполняем push(Q, w).
- После завершения работы алгоритма указатели parent(v) $(v \in V)$ задают $depeso\ noucka.$

- $nouckom \ 6 \ mupuny$, если Q есть очередь;
- поиском в глубину, если Q есть стек;

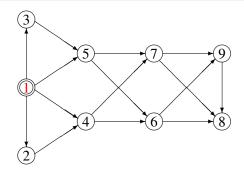
- Задан орграф G = (V, E) и вершина $s \in V$.
- ullet Нужно найти все вершины, достижимые в G из s.
- Алгоритм:
 - Инициализация: Q = (s), parent(s) = s, parent(v) = nil для $bcex v \in V \setminus \{s\}$.
 - Пока $Q \neq \emptyset$,
 - v = pop(Q);
 - Для всех $(v, w) \in E(v, V)$, если parent(w) = nil, полагаем parent(w) = v и выполняем push(Q, w).
- После завершения работы алгоритма указатели parent(v) $(v \in V)$ задают $depeso\ noucka.$

- nouckom в ширину, если Q есть очередь;
- nouckom в глубину, если Q есть стек;



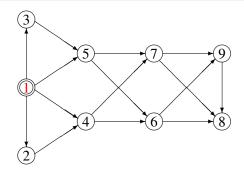
| parent(v) | 1 | nil |
|-----------|---|-----|-----|-----|-----|-----|-----|-----|-----|

Q



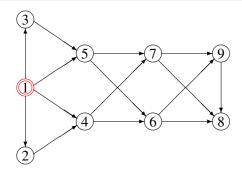
			3						
parent(v)	1	nil							

Q



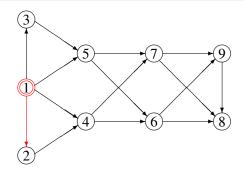
v	1	2	3	4	5	6	7	8	9
parent(v)	1	nil							

v	Q
	1,



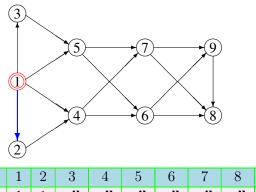
v	1	2	3	4	5	6	7	8	9
parent(v)	1	nil							

v	Q
1	



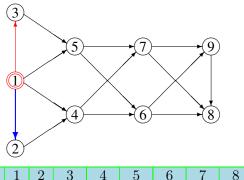
ν	1	2	3	4	5	6	7	8	9
parent(v)	1	nil							

v	Q
1	



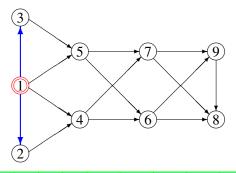
v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	nil						

v	Q
1	2,



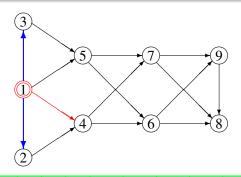
v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	nil						

v	Q	
1	2,	



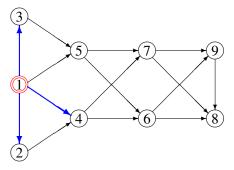
v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	nil	nil	nil	nil	nil	nil

v	Q
1	2,3,



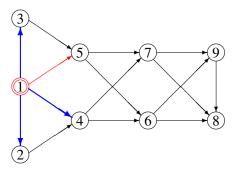
	v	1	2	3	4	5	6	7	8	9
I	parent(v)	1	1	1	nil	nil	nil	nil	nil	nil

v	Q
1	2,3,



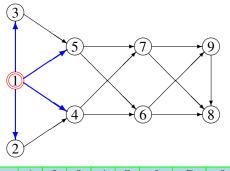
v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	nil	nil	nil	nil	nil

v	Q
1	2,3,4,



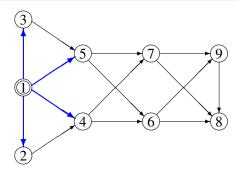
	v	1	2	3	4	5	6	7	8	9
I	parent(v)	1	1	1	1	nil	nil	nil	nil	nil

v	Q
1	2,3,4,



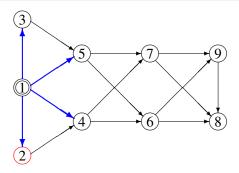
ν	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	nil	nil	nil	nil

v	Q
1	2,3,4, <mark>5</mark> ,



v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	nil	nil	nil	nil

v	Q
	2,3,4,5,



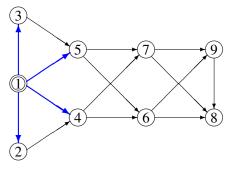
	v	1	2	3	4	5	6	7	8	9
ĺ	parent(v)	1	1	1	1	1	nil	nil	nil	nil

v	Q
2	3,4,5,



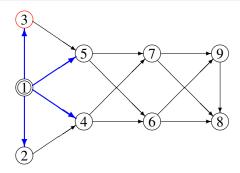
ν	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	nil	nil	nil	nil

v	Q
2	3,4,5,



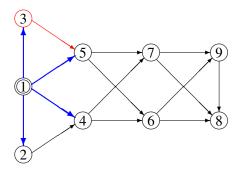
ν	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	nil	nil	nil	nil

v	Q
	3,4,5,



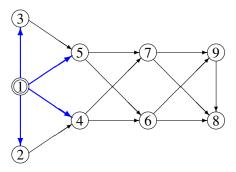
ν	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	nil	nil	nil	nil

v	Q
3	4,5,



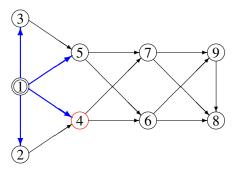
	v	1	2	3	4	5	6	7	8	9
ĺ	parent(v)	1	1	1	1	1	nil	nil	nil	nil

v	Q
3	4,5,



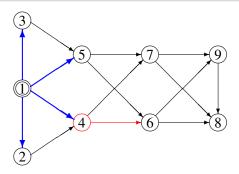
ν	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	nil	nil	nil	nil

v	Q
	4,5,



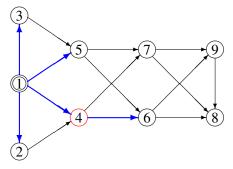
ν	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	nil	nil	nil	nil

v	Q
4	5,



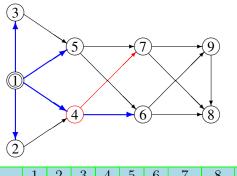
ν	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	nil	nil	nil	nil

v	Q
4	5,



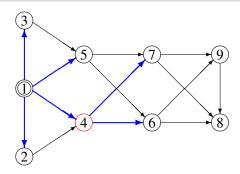
v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	4	nil	nil	nil

v	Q
4	5, <mark>6</mark> ,



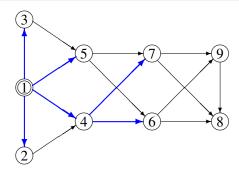
v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	4	nil	nil	nil

v	Q
4	5,6,



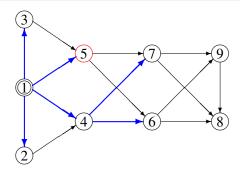
v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	4	4	nil	nil

v	Q
4	5,6, <mark>7</mark> ,



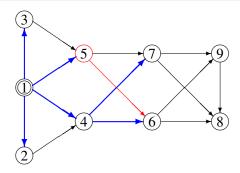
v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	4	4	nil	nil

v	Q
	5,6,7,



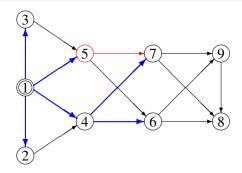
v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	4	4	nil	nil

v	Q
5	6,7,



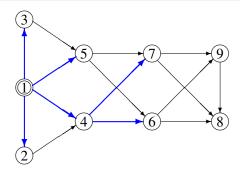
v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	4	4	nil	nil

v	Q
5	6,7,



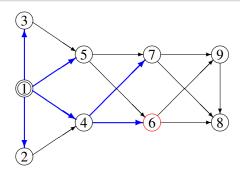
v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	4	4	nil	nil

v	Q
5	6,7,



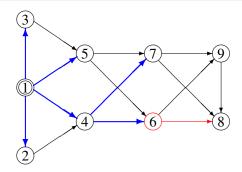
v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	4	4	nil	nil

v	Q
	6,7,



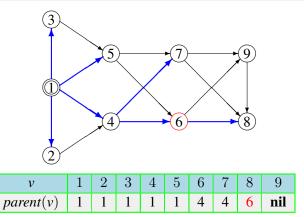
	v	1	2	3	4	5	6	7	8	9
p_{ϵ}	arent(v)	1	1	1	1	1	4	4	nil	nil

v	Q
6	7,

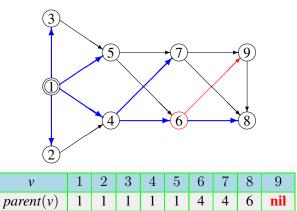


v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	4	4	nil	nil

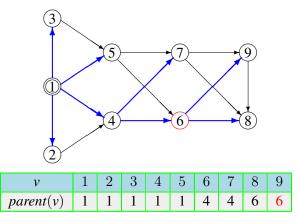
v	Q
6	7,



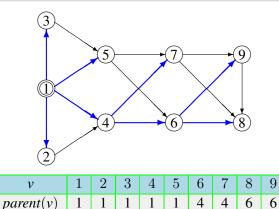
v	Q
6	7,8,



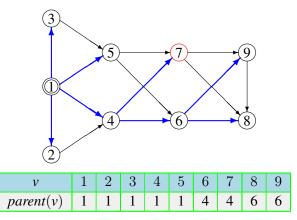
v	Q
6	7,8,



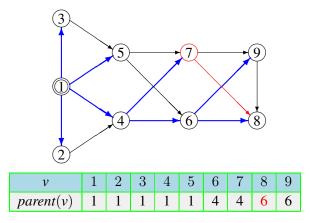
v	Q
6	7,8, <mark>9</mark> ,



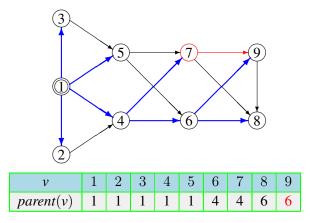
v	Q
	7,8,9,



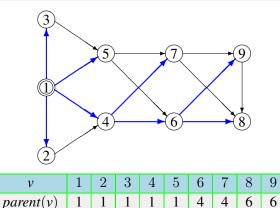
v	Q	
7		8,9,



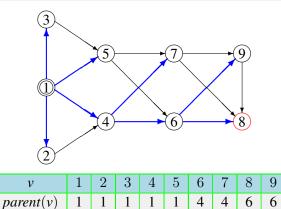
v	Q	
7		8,9,



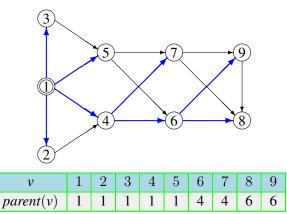
v	Q	
7		8,9,



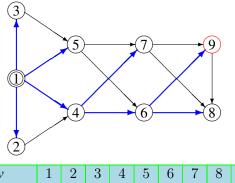
v	Q	
		8,9,



v	Q	
8		9,

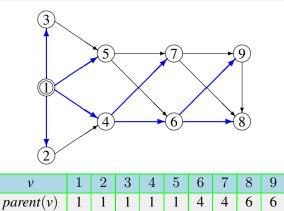


v	Q	
		9,

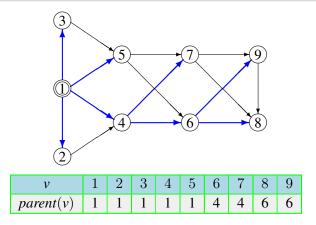


v	1	2	3	4	5	6	7	8	9
parent(v)	1	1	1	1	1	4	4	6	6

v	Q
9	



v	Q



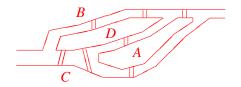
Очередь пуста \Rightarrow указатели *parent* задают дерево поиска, дуги которого изображены синим цветом.

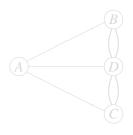
План лекции

- Прафы
 - Деревья
 - Поиск по графу

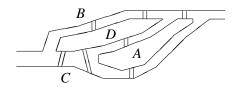
- Примеры самых известных задач теории графов
 - Эйлеровы и гамильтоновы циклы
 - Клики, раскраска и укладка графов

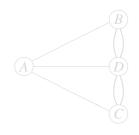
- На реке Преголь в Кенигсберге было два острова, которые соединялись между собой и с берегами реки семью мостами, как показано на рис. справа.
- Задача заключалась в том, чтобы, начав двигаться с одного из участков суши, помеченных на рисунке буквами А. В. С и D.
- пройти по каждому мосту ровно один раз и в результате вернуться в исходную точку.





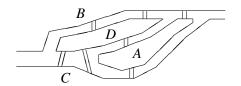
- На реке Преголь в Кенигсберге было два острова, которые соединялись между собой и с берегами реки семью мостами, как показано на рис. справа.
- Задача заключалась в том, чтобы, начав двигаться с одного из участков суши, помеченных на рисунке буквами *A*, *B*, *C* и *D*,
- пройти по каждому мосту ровно один раз и в результате вернуться в исходную точку.

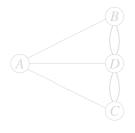




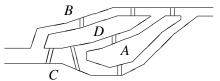
Задача о кенигсбергских мостах

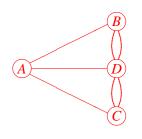
- На реке Преголь в Кенигсберге было два острова, которые соединялись между собой и с берегами реки семью мостами, как показано на рис. справа.
- Задача заключалась в том, чтобы, начав двигаться с одного из участков суши, помеченных на рисунке буквами A, B, C и D,
- пройти по каждому мосту ровно один раз и в результате вернуться в исходную точку.



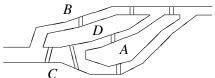


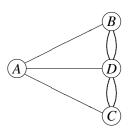
- В 1736 г. Эйлер доказал, что такого маршрута не существует, представив схему мостов мультиграфом.
- В этом мультиграфе нужно найти цикл (не обязательно простой), который проходит по каждому ребру ровно один раз.
- В последствии такие циклы стали называть эйлеровыми,
- а графы (мультиграфы), содержащие эйлеровы циклы, — эйлеровыми графами (мильтиграфами).





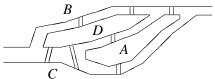
- В 1736 г. Эйлер доказал, что такого маршрута не существует, представив схему мостов мультиграфом.
- В этом мультиграфе нужно найти цикл (не обязательно простой), который проходит по каждому ребру ровно один раз.
- В последствии такие циклы стали называть эйлеровыми,
- а графы (мультиграфы), содержащие эйлеровы циклы, — эйлеровыми графами (мильтиграфами).

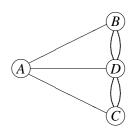




Задача о кенигсбергских мостах

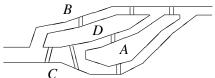
- В 1736 г. Эйлер доказал, что такого маршрута не существует, представив схему мостов мультиграфом.
- В этом мультиграфе нужно найти цикл (не обязательно простой), который проходит по каждому ребру ровно один раз.
- В последствии такие циклы стали называть эйлеровыми,
- а графы (мультиграфы), содержащие эйлеровы циклы, — эйлеровыми графами (мультиграфами).

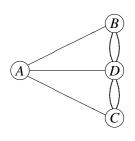




Задача о кенигсбергских мостах

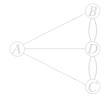
- В 1736 г. Эйлер доказал, что такого маршрута не существует, представив схему мостов мультиграфом.
- В этом мультиграфе нужно найти цикл (не обязательно простой), который проходит по каждому ребру ровно один раз.
- В последствии такие циклы стали называть эйлеровыми,
- а графы (мультиграфы), содержащие эйлеровы циклы, — эйлеровыми графами (мультиграфами).





Теорема 2 (Эйлера)

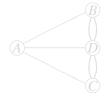
Мультиграф G эйлеров тогда и только тогда, когда он связен и степень каждой его вершины четная.



- нечетна (равна трем),
- то этот мультиграф не имеет эйлерового цикла,
- и, следовательно, задача о кенигсбергских мостах также не имеет решения.

Теорема 2 (Эйлера)

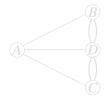
Мультиграф G эйлеров тогда и только тогда, когда он связен и степень каждой его вершины четная.



- нечетна (равна трем),
- то этот мультиграф не имеет эйлерового цикла,
- и, следовательно, задача о кенигсбергских мостах также не имеет решения.

Теорема 2 (Эйлера)

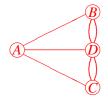
Мультиграф G эйлеров тогда и только тогда, когда он связен и степень каждой его вершины четная.



- нечетна (равна трем),
- то этот мультиграф не имеет эйлерового цикла,
- и, следовательно, задача о кенигсбергских мостах также не имеет решения.

Теорема 2 (Эйлера)

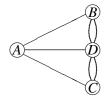
Мультиграф G эйлеров тогда и только тогда, когда он связен и степень каждой его вершины четная.



- нечетна (равна трем),
- то этот мультиграф не имеет эйлерового цикла,
- и, следовательно, задача о кенигсбергских мостах также не имеет решения.

Теорема 2 (Эйлера)

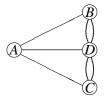
Мультиграф G эйлеров тогда и только тогда, когда он связен и степень каждой его вершины четная.



- нечетна (равна трем),
- то этот мультиграф не имеет эйлерового цикла,
- и, следовательно, задача о кенигсбергских мостах также не имеет решения.

Теорема 2 (Эйлера)

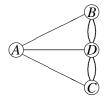
Мультиграф G эйлеров тогда и только тогда, когда он связен и степень каждой его вершины четная.



- нечетна (равна трем),
- то этот мультиграф не имеет эйлерового цикла,
- и, следовательно, задача о кенигсбергских мостах также не имеет решения.

Теорема 2 (Эйлера)

Мультиграф G эйлеров тогда и только тогда, когда он связен и степень каждой его вершины четная.



- нечетна (равна трем),
- то этот мультиграф не имеет эйлерового цикла,
- ullet и, следовательно, задача о кенигсбергских мостах также не имеет решения.

- ullet Рассмотрим граф G=(V,E).
- Простой цикл, содержащий все n = |V| вершин графа, называется *гамильтоновым*.
- Граф G называется *гамильтоновым*, если он содержит гамильтонов цикл.
- Проверка того, что заданный граф является гамильтоновым, является одной из самых знаменитых задач теории графов.
- В 1859 г. известный математик У. Гамильтон головоломку, в которой требовалось найти обход всех вершин додекадрона, посещая каждую вершину не более одного раза.
- Эта задача эквивалентна задаче поиска гамильтонова пикла в следующем графе.

- Рассмотрим граф G = (V, E).
- Простой цикл, содержащий все n = |V| вершин графа, называется $\mathit{гамильтоновым}$.
- Граф G называется *гамильтоновым*, если он содержит гамильтонов цикл.
- Проверка того, что заданный граф является гамильтоновым, является одной из самых знаменитых задач теории графов.
- В 1859 г. известный математик У. Гамильтон головоломку, в которой требовалось найти обход всех вершин додекадрона, посещая каждую вершину не более одного раза.
- Эта задача эквивалентна задаче поиска гамильтонова цикла в следующем графе.

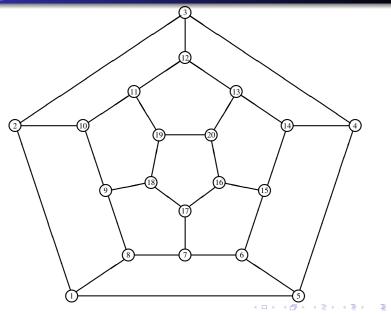
- Рассмотрим граф G = (V, E).
- Простой цикл, содержащий все n = |V| вершин графа, называется $\mathit{гамильтоновым}$.
- Граф G называется *гамильтоновым*, если он содержит гамильтонов цикл.
- Проверка того, что заданный граф является гамильтоновым, является одной из самых знаменитых задач теории графов.
- В 1859 г. известный математик У. Гамильтон головоломку, в которой требовалось найти обход всех вершин додекадрона, посещая каждую вершину не более одного раза.
- Эта задача эквивалентна задаче поиска гамильтонова цикла в следующем графе.

- Рассмотрим граф G = (V, E).
- Простой цикл, содержащий все n = |V| вершин графа, называется $\mathit{гамильтоновым}$.
- Граф G называется *гамильтоновым*, если он содержит гамильтонов цикл.
- Проверка того, что заданный граф является гамильтоновым, является одной из самых знаменитых задач теории графов.
- В 1859 г. известный математик У. Гамильтон головоломку, в которой требовалось найти обход всех вершин додекадрона, посещая каждую вершину не более одного раза.
- Эта задача эквивалентна задаче поиска гамильтонова цикла в следующем графе.

- Рассмотрим граф G = (V, E).
- Простой цикл, содержащий все n = |V| вершин графа, называется $\mathit{гамильтоновым}$.
- Граф G называется *гамильтоновым*, если он содержит гамильтонов цикл.
- Проверка того, что заданный граф является гамильтоновым, является одной из самых знаменитых задач теории графов.
- В 1859 г. известный математик У. Гамильтон головоломку, в которой требовалось найти обход всех вершин додекадрона, посещая каждую вершину не более одного раза.
- Эта задача эквивалентна задаче поиска гамильтонова цикла в следующем графе.

- Рассмотрим граф G = (V, E).
- Простой цикл, содержащий все n = |V| вершин графа, называется $\mathit{гамильтоновым}$.
- Граф G называется *гамильтоновым*, если он содержит гамильтонов цикл.
- Проверка того, что заданный граф является гамильтоновым, является одной из самых знаменитых задач теории графов.
- В 1859 г. известный математик У. Гамильтон головоломку, в которой требовалось найти обход всех вершин додекадрона, посещая каждую вершину не более одного раза.
- Эта задача эквивалентна задаче поиска гамильтонова цикла в следующем графе.

Граф головоломки Гамильтона



• При дворе короля Артура проживали 500 рыцарей, не все из которых ладили между собой.

- Из-за этого во время обеда, где все рыцари сидели за круглым столом, часто возникали драки между сидящими рядом рыцарями.
- Королю Артуру это не нравилось, и он приказал своему магу Мерлину рассадить рыцарей таким образом, чтобы рядом не сидели враждующие рыцари.
- Задача Мерлина формулируется как задача поиска гамильтонова цикла в графе, в котором
- вершины представляют рыцарей,
- и две вершины соединены ребром, если соответствующие им рыцари не враждуют между собой.

- При дворе короля Артура проживали 500 рыцарей, не все из которых ладили между собой.
- Из-за этого во время обеда, где все рыцари сидели за круглым столом, часто возникали драки между сидящими рядом рыцарями.
- Королю Артуру это не нравилось, и он приказал своему магу Мерлину рассадить рыцарей таким образом, чтобы рядом не сидели враждующие рыцари.
- Задача Мерлина формулируется как задача поиска гамильтонова цикла в графе, в котором
- вершины представляют рыцарей,
- и две вершины соединены ребром, если соответствующие им рыцари не враждуют между собой.

- При дворе короля Артура проживали 500 рыцарей, не все из которых ладили между собой.
- Из-за этого во время обеда, где все рыцари сидели за круглым столом, часто возникали драки между сидящими рядом рыцарями.
- Королю Артуру это не нравилось, и он приказал своему магу Мерлину рассадить рыцарей таким образом, чтобы рядом не сидели враждующие рыцари.
- Задача Мерлина формулируется как задача поиска гамильтонова цикла в графе, в котором
- вершины представляют рыцарей,
- и две вершины соединены ребром, если соответствующие им рыцари не враждуют между собой.

- При дворе короля Артура проживали 500 рыцарей, не все из которых ладили между собой.
- Из-за этого во время обеда, где все рыцари сидели за круглым столом, часто возникали драки между сидящими рядом рыцарями.
- Королю Артуру это не нравилось, и он приказал своему магу Мерлину рассадить рыцарей таким образом, чтобы рядом не сидели враждующие рыцари.
- Задача Мерлина формулируется как задача поиска гамильтонова цикла в графе, в котором
- вершины представляют рыцарей,
- и две вершины соединены ребром, если соответствующие им рыцари не враждуют между собой.

- При дворе короля Артура проживали 500 рыцарей, не все из которых ладили между собой.
- Из-за этого во время обеда, где все рыцари сидели за круглым столом, часто возникали драки между сидящими рядом рыцарями.
- Королю Артуру это не нравилось, и он приказал своему магу Мерлину рассадить рыцарей таким образом, чтобы рядом не сидели враждующие рыцари.
- Задача Мерлина формулируется как задача поиска гамильтонова цикла в графе, в котором
- вершины представляют рыцарей,
- и две вершины соединены ребром, если соответствующие им рыцари не враждуют между собой.

- При дворе короля Артура проживали 500 рыцарей, не все из которых ладили между собой.
- Из-за этого во время обеда, где все рыцари сидели за круглым столом, часто возникали драки между сидящими рядом рыцарями.
- Королю Артуру это не нравилось, и он приказал своему магу Мерлину рассадить рыцарей таким образом, чтобы рядом не сидели враждующие рыцари.
- Задача Мерлина формулируется как задача поиска гамильтонова цикла в графе, в котором
- вершины представляют рыцарей,
- и две вершины соединены ребром, если соответствующие им рыцари не враждуют между собой.

- ullet Каждому ребру $(v,w)\in E$ графа G=(V,E) приписана стоимость c(v,w),
- и нам нужно найти гамильтоном цикл $\Gamma = (v_0, v_1, \dots, v_n = v_0)$
- минимальной стоимости $c(\Gamma) \stackrel{\text{def}}{=} \sum_{i=1}^n c(v_{i-1}, v_i)$.
- Задача коммиволжера это задача о минимальном гамильтоновом цикле в полном графе.
- Вершины графа представляют некоторые города, а стоимости c(v,w) это расстояния между городами.
- Коммивояжер, начиная из города, в котором он проживает,
- хочет посетить каждый из остальных n-1 городов ровно один раз и вернуться обратно в родной город,
- при этом длина его маршрута должна быть минимальной.

- Каждому ребру $(v,w) \in E$ графа G = (V,E) приписана стоимость c(v,w),
- и нам нужно найти гамильтоном цикл $\Gamma = (v_0, v_1, \dots, v_n = v_0)$
- минимальной стоимости $c(\Gamma) \stackrel{\text{def}}{=} \sum_{i=1}^n c(v_{i-1}, v_i)$.
- Задача коммивояжера это задача о минимальном гамильтоновом цикле в полном графе.
- Вершины графа представляют некоторые города, а стоимости c(v, w) это расстояния между городами.
- Коммивояжер, начиная из города, в котором он проживает,
- хочет посетить каждый из остальных n-1 городов ровно один раз и вернуться обратно в родной город,
- при этом длина его маршрута должна быть минимальной.

- Каждому ребру $(v,w) \in E$ графа G = (V,E) приписана стоимость c(v,w),
- и нам нужно найти гамильтоном цикл $\Gamma = (v_0, v_1, \dots, v_n = v_0)$
- минимальной стоимости $c(\Gamma) \stackrel{\text{def}}{=} \sum_{i=1}^{n} c(v_{i-1}, v_i)$.
- Задача коммиволжера это задача о минимальном гамильтоновом цикле в полном графе.
- Вершины графа представляют некоторые города, а стоимости c(v,w) это расстояния между городами.
- Коммивояжер, начиная из города, в котором он проживает,
- хочет посетить каждый из остальных n-1 городов ровно один раз и вернуться обратно в родной город,
- при этом длина его маршрута должна быть минимальной.

- Каждому ребру $(v, w) \in E$ графа G = (V, E) приписана стоимость c(v, w),
- ullet и нам нужно найти гамильтоном цикл $\Gamma = (v_0, v_1, \dots, v_n = v_0)$
- минимальной стоимости $c(\Gamma) \stackrel{\text{def}}{=} \sum_{i=1}^{n} c(v_{i-1}, v_i)$.
- Задача коммивояжера это задача о минимальном гамильтоновом цикле в полном графе.
- Вершины графа представляют некоторые города, а стоимости c(v,w) это расстояния между городами.
- Коммивояжер, начиная из города, в котором он проживает,
- хочет посетить каждый из остальных n-1 городов ровно один раз и вернуться обратно в родной город,
- при этом длина его маршрута должна быть минимальной.

- Каждому ребру $(v,w) \in E$ графа G = (V,E) приписана стоимость c(v,w),
- и нам нужно найти гамильтоном цикл $\Gamma = (v_0, v_1, \dots, v_n = v_0)$
- минимальной стоимости $c(\Gamma) \stackrel{\text{def}}{=} \sum_{i=1}^n c(\nu_{i-1}, \nu_i)$.
- Задача коммивояжера это задача о минимальном гамильтоновом цикле в полном графе.
- Вершины графа представляют некоторые города, а стоимости c(v,w) это расстояния между городами.
- Коммивояжер, начиная из города, в котором он проживает,
- хочет посетить каждый из остальных n-1 городов ровно один раз и вернуться обратно в родной город,
- при этом длина его маршрута должна быть минимальной.

- Каждому ребру $(v,w) \in E$ графа G = (V,E) приписана стоимость c(v,w),
- и нам нужно найти гамильтоном цикл $\Gamma = (v_0, v_1, \dots, v_n = v_0)$
- минимальной стоимости $c(\Gamma) \stackrel{\text{def}}{=} \sum_{i=1}^{n} c(v_{i-1}, v_i)$.
- Задача коммивояжера это задача о минимальном гамильтоновом цикле в полном графе.
- Вершины графа представляют некоторые города, а стоимости c(v, w) это расстояния между городами.
- Коммивояжер, начиная из города, в котором он проживает,
- хочет посетить каждый из остальных n-1 городов ровно один раз и вернуться обратно в родной город,
- при этом длина его маршрута должна быть минимальной

- Каждому ребру $(v,w) \in E$ графа G = (V,E) приписана стоимость c(v,w),
- ullet и нам нужно найти гамильтоном цикл $\Gamma = (v_0, v_1, \dots, v_n = v_0)$
- минимальной стоимости $c(\Gamma) \stackrel{\text{def}}{=} \sum_{i=1}^{n} c(v_{i-1}, v_i)$.
- Задача коммивояжера это задача о минимальном гамильтоновом цикле в полном графе.
- Вершины графа представляют некоторые города, а стоимости c(v, w) это расстояния между городами.
- Коммивояжер, начиная из города, в котором он проживает,
- \bullet хочет посетить каждый из остальных n-1 городов ровно один раз и вернуться обратно в родной город,
- при этом длина его маршрута должна быть минимальной

- Каждому ребру $(v,w) \in E$ графа G = (V,E) приписана стоимость c(v,w),
- ullet и нам нужно найти гамильтоном цикл $\Gamma = (v_0, v_1, \dots, v_n = v_0)$
- минимальной стоимости $c(\Gamma) \stackrel{\text{def}}{=} \sum_{i=1}^n c(v_{i-1}, v_i)$.
- Задача коммивояжера это задача о минимальном гамильтоновом цикле в полном графе.
- Вершины графа представляют некоторые города, а стоимости c(v,w) это расстояния между городами.
- Коммивояжер, начиная из города, в котором он проживает,
- хочет посетить каждый из остальных n-1 городов ровно один раз и вернуться обратно в родной город,
- при этом длина его маршрута должна быть минимальной.

План лекции

- 1 Графы
 - Деревья
 - Поиск по графу

- Примеры самых известных задач теории графов
 - Эйлеровы и гамильтоновы циклы
 - Клики, раскраска и укладка графов

- \bullet Граф $H=(\bar{V},\bar{E})$ называется подграфом графа G=(V,E),
- ullet если $ar{V} \subseteq V$ и $ar{E} \subseteq E$.
- Максимальный (по включению) полный подграф графа
- На практике часто встречается задача о максимальной
- Для примера, пусть вершины графа представляют
- Мы решаем задачу о максимальной клике, когда ходим

- Граф $H = (\bar{V}, \bar{E})$ называется подграфом графа G = (V, E),
- ullet если $ar{V} \subseteq V$ и $ar{E} \subseteq E$.
- Максимальный (по включению) полный подграф графа
- На практике часто встречается задача о максимальной
- Для примера, пусть вершины графа представляют
- Мы решаем задачу о максимальной клике, когда ходим

- Граф $H = (\bar{V}, \bar{E})$ называется подграфом графа G = (V, E),
- ullet если $\bar{V} \subset V$ и $\bar{E} \subseteq E$.
- Максимальный (по включению) полный подграф графа G называется κ ликой.
- На практике часто встречается задача о максимальной
- Для примера, пусть вершины графа представляют
- Мы решаем задачу о максимальной клике, когда ходим

- Граф $H=(\bar{V},\bar{E})$ называется подграфом графа G=(V,E),
- ullet если $ar{V} \subseteq V$ и $ar{E} \subseteq E$.
- Максимальный (по включению) полный подграф графа
 G называется кликой.
- На практике часто встречается задача о максимальной клике, целью в которой является поиск клики с максимальным количеством вершин.
- Для примера, пусть вершины графа представляют некоторую группу людей, и две вершины соединены ребром, если соответствующие им люди знакомы друг с другом.
- Мы решаем задачу о максимальной клике, когда ходим найти наибольшую подгруппу людей попарно знакомых друг с другом

- ullet Граф $H=(ar{V},ar{E})$ называется nodepa фом графа G=(V,E),
- ullet если $ar{V} \subseteq V$ и $ar{E} \subseteq E$.
- Максимальный (по включению) полный подграф графа
 G называется кликой.
- На практике часто встречается задача о максимальной клике, целью в которой является поиск клики с максимальным количеством вершин.
- Для примера, пусть вершины графа представляют некоторую группу людей, и две вершины соединены ребром, если соответствующие им люди знакомы друг с другом.
- Мы решаем задачу о максимальной клике, когда ходим найти наибольшую подгруппу людей попарно знакомых друг с другом

Задача о максимальной клике

- Граф $H=(\bar{V},\bar{E})$ называется подграфом графа G=(V,E),
- ullet если $ar{V} \subseteq V$ и $ar{E} \subseteq E$.
- Максимальный (по включению) полный подграф графа
 G называется кликой.
- На практике часто встречается задача о максимальной клике, целью в которой является поиск клики с максимальным количеством вершин.
- Для примера, пусть вершины графа представляют некоторую группу людей, и две вершины соединены ребром, если соответствующие им люди знакомы друг с другом.
- Мы решаем задачу о максимальной клике, когда ходим найти наибольшую подгруппу людей попарно знакомых друг с другом

- В какое минимальное число цветов можно раскрасить вершины заданного графа, чтобы никакие две смежные вершины не были окрашены в один цвет.
- Так формулируется задача о раскраске графа.
- Самый знаменитый частный случай данной задачи,
 известный как проблема четырех красок, состоит в том,
- чтобы определить минимальное число цветов, необходимых для раскраски политической карты так,
- чтобы никакие две страны, имеющие общую границу, не были раскрашены в один цвет.
- Если представить каждую страну отдельной вершиной графа и соединить две вершины ребром, если соответствующие им страны имеют общую границу,
- то задача о раскраске карты представляется как задача о раскраске полученного графа.

• В какое минимальное число цветов можно раскрасить вершины заданного графа, чтобы никакие две смежные вершины не были окрашены в один цвет.

- Так формулируется задача о раскраске графа.
- Самый знаменитый частный случай данной задачи,
 известный как проблема четырех красок, состоит в том,
- чтобы определить минимальное число цветов, необходимых для раскраски политической карты так,
- чтобы никакие две страны, имеющие общую границу, не были раскрашены в один цвет.
- Если представить каждую страну отдельной вершиной графа и соединить две вершины ребром, если соответствующие им страны имеют общую границу,
- то задача о раскраске карты представляется как задача о раскраске полученного графа.

- В какое минимальное число цветов можно раскрасить вершины заданного графа, чтобы никакие две смежные вершины не были окрашены в один цвет.
- Так формулируется задача о раскраске графа.
- Самый знаменитый частный случай данной задачи, известный как *проблема четырех красок*, состоит в том,
- чтобы определить минимальное число цветов, необходимых для раскраски политической карты так,
- чтобы никакие две страны, имеющие общую границу, не были раскрашены в один цвет.
- Если представить каждую страну отдельной вершиной графа и соединить две вершины ребром, если соответствующие им страны имеют общую границу,
- то задача о раскраске карты представляется как задача о раскраске полученного графа.

- В какое минимальное число цветов можно раскрасить вершины заданного графа, чтобы никакие две смежные вершины не были окрашены в один цвет.
- Так формулируется задача о раскраске графа.
- Самый знаменитый частный случай данной задачи, известный как *проблема четырех красок*, состоит в том,
- чтобы определить минимальное число цветов, необходимых для раскраски политической карты так,
- чтобы никакие две страны, имеющие общую границу, не были раскрашены в один цвет.
- Если представить каждую страну отдельной вершиной графа и соединить две вершины ребром, если соответствующие им страны имеют общую границу,
- то задача о раскраске карты представляется как задача о раскраске полученного графа.

- В какое минимальное число цветов можно раскрасить вершины заданного графа, чтобы никакие две смежные вершины не были окрашены в один цвет.
- Так формулируется задача о раскраске графа.
- Самый знаменитый частный случай данной задачи, известный как *проблема четырех красок*, состоит в том,
- чтобы определить минимальное число цветов, необходимых для раскраски политической карты так,
- чтобы никакие две страны, имеющие общую границу, не были раскрашены в один цвет.
- Если представить каждую страну отдельной вершиной графа и соединить две вершины ребром, если соответствующие им страны имеют общую границу,
- то задача о раскраске карты представляется как задача о раскраске полученного графа.

- В какое минимальное число цветов можно раскрасить вершины заданного графа, чтобы никакие две смежные вершины не были окрашены в один цвет.
- Так формулируется задача о раскраске графа.
- Самый знаменитый частный случай данной задачи, известный как *проблема четырех красок*, состоит в том,
- чтобы определить минимальное число цветов, необходимых для раскраски политической карты так,
- чтобы никакие две страны, имеющие общую границу, не были раскрашены в один цвет.
- Если представить каждую страну отдельной вершиной графа и соединить две вершины ребром, если соответствующие им страны имеют общую границу,
- то задача о раскраске карты представляется как задача о раскраске полученного графа.

- В какое минимальное число цветов можно раскрасить вершины заданного графа, чтобы никакие две смежные вершины не были окрашены в один цвет.
- Так формулируется задача о раскраске графа.
- Самый знаменитый частный случай данной задачи, известный как *проблема четырех красок*, состоит в том,
- чтобы определить минимальное число цветов, необходимых для раскраски политической карты так,
- чтобы никакие две страны, имеющие общую границу, не были раскрашены в один цвет.
- Если представить каждую страну отдельной вершиной графа и соединить две вершины ребром, если соответствующие им страны имеют общую границу,
- то задача о раскраске карты представляется как задача о раскраске полученного графа.

• Нетрудно привести пример карты, для раскраски

- которой требуется четыре цвета.

 Долгое время гипотеза о том, что четырех цветов
 - достаточно для раскраски любой карты оставалась недоказанной. Это было сделано Аппелем и Хакеном в 1976 г. (К.І. Appel, W. Haken. Every planar map is four-colorable. *Bull. Am. Math. Soc.* **82** (1976) 711–712.) оригинальным способом:
- сначала доказательство гипотезы было сведено к рассмотрению достаточно большого числа частных случаев задачи,
- а затем была написана компьютерная программа, которая выполнила «раскраску» карт для каждого из выделенных случаев.

Проблема четырех красок

 Нетрудно привести пример карты, для раскраски которой требуется четыре цвета.

• Долгое время гипотеза о том, что четырех цветов

- достаточно для раскраски любой карты оставалась недоказанной. Это было сделано Аппелем и Хакеном в 1976 г. (K.I. Appel, W. Haken. Every planar map is four-colorable. *Bull. Am. Math. Soc.* **82** (1976) 711–712.) оригинальным способом:
- сначала доказательство гипотезы было сведено к рассмотрению достаточно большого числа частных случаев задачи,
- а затем была написана компьютерная программа, которая выполнила «раскраску» карт для каждого из выделенных случаев.

Проблема четырех красок

- Нетрудно привести пример карты, для раскраски которой требуется четыре цвета.
- Долгое время гипотеза о том, что четырех цветов достаточно для раскраски любой карты оставалась недоказанной. Это было сделано Аппелем и Хакеном в 1976 г. (К.І. Appel, W. Haken. Every planar map is four-colorable. *Bull. Am. Math. Soc.* 82 (1976) 711–712.) оригинальным способом:
- сначала доказательство гипотезы было сведено к рассмотрению достаточно большого числа частных случаев задачи,
- а затем была написана компьютерная программа, которая выполнила «раскраску» карт для каждого из вылеленных случаев.

- Нетрудно привести пример карты, для раскраски которой требуется четыре цвета.
- Долгое время гипотеза о том, что четырех цветов достаточно для раскраски любой карты оставалась недоказанной. Это было сделано Аппелем и Хакеном в 1976 г. (K.I. Appel, W. Haken. Every planar map is four-colorable. *Bull. Am. Math. Soc.* 82 (1976) 711–712.) оригинальным способом:
- сначала доказательство гипотезы было сведено к рассмотрению достаточно большого числа частных случаев задачи,
- а затем была написана компьютерная программа, которая выполнила «раскраску» карт для каждого из выделенных случаев.

- Как мы уже видели, графы можно рисовать на плоскости, причем, это можно сделать разными способами.
- Считается, что рисунок графа более привлекателен, если на нем количество пересечений ребер минимально.
- В идеале, хотелось бы полностью избежать пересечений ребер, но это не всегда возможно.
- Два самых «маленьких» графа, которые нельзя нарисовать на плоскости без пересечений ребер, это графы K_5 и $K_{3,3}$.

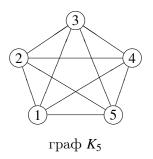
Как мы уже видели, графы можно рисовать на плоскости, причем, это можно сделать разными способами.

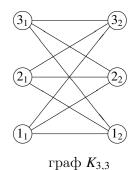
- Считается, что рисунок графа более привлекателен, если на нем количество пересечений ребер минимально.
- В идеале, хотелось бы полностью избежать пересечений ребер, но это не всегда возможно.
- Два самых «маленьких» графа, которые нельзя нарисовать на плоскости без пересечений ребер, это графы K_5 и $K_{3,3}$.

- Как мы уже видели, графы можно рисовать на плоскости, причем, это можно сделать разными способами.
- Считается, что рисунок графа более привлекателен, если на нем количество пересечений ребер минимально.
- В идеале, хотелось бы полностью избежать пересечений ребер, но это не всегда возможно.
- Два самых «маленьких» графа, которые нельзя нарисовать на плоскости без пересечений ребер, это графы K_5 и $K_{3,3}$.

- Как мы уже видели, графы можно рисовать на плоскости, причем, это можно сделать разными способами.
- Считается, что рисунок графа более привлекателен, если на нем количество пересечений ребер минимально.
- В идеале, хотелось бы полностью избежать пересечений ребер, но это не всегда возможно.
- Два самых «маленьких» графа, которые нельзя нарисовать на плоскости без пересечений ребер, это графы K_5 и $K_{3,3}$.

Примеры непланарных графов





- Граф, который можно нарисовать на плоскости без пересечения ребер, называется планарным.
- \bullet Если граф G непланарен, то также непланарен и граф
- Графы G и G' называются гомеоморфными.

- Граф, который можно нарисовать на плоскости без пересечения ребер, называется *планарным*.
- Если граф G непланарен, то также непланарен и граф G', который получается из исходного переименованием вершин и заменой нескольких его ребер простыми путями.
- ullet Графы G и G' называются гомеоморфными.

Теорема 3 (Куратовского)

Граф G планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных K₅ и K_{3,3}.

- Граф, который можно нарисовать на плоскости без пересечения ребер, называется *планарным*.
- Если граф G непланарен, то также непланарен и граф G', который получается из исходного переименованием вершин и заменой нескольких его ребер простыми путями.
- ullet Графы G и G' называются гомеоморфными.

Теорема 3 (Куратовского)

Граф G планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных K₅ и K_{3,3}.

- Граф, который можно нарисовать на плоскости без пересечения ребер, называется *планарным*.
- Если граф G непланарен, то также непланарен и граф G', который получается из исходного переименованием вершин и заменой нескольких его ребер простыми путями.
- Графы G и G' называются гомеоморфными.

Теорема 3 (Куратовского)

Граф G планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных K_5 и $K_{3,3}$.

- Граф, который можно нарисовать на плоскости без пересечения ребер, называется планарным.
- \bullet Если граф G непланарен, то также непланарен и граф G', который получается из исходного переименованием вершин и заменой нескольких его ребер простыми путями.
- Графы G и G' называются гомеоморфными.

Теорема 3 (Куратовского)

 Γ раф G планарен тогда и только тогда, когда он не

- Граф, который можно нарисовать на плоскости без пересечения ребер, называется *планарным*.
- Если граф G непланарен, то также непланарен и граф G', который получается из исходного переименованием вершин и заменой нескольких его ребер простыми путями.
- Графы G и G' называются гомеоморфными.

Теорема 3 (Куратовского)

Граф G планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных K_5 и $K_{3,3}$.