Лагранжева двойственность

H.H. Писарук pisaruk@yandex.by

Экономический факультет Белорусский государственный университет

Минск - 2015

План лекции

- Двойственность Лагранжа
 - Двойственная функция Лагранжа
 - Слабая и сильная двойственность
 - Разрыв двойственности
- Экономическая интерпретация ланранжевой двойственности
 - Два сценария
 - Интерпретация слабой и сильной теорем двойственности

План лекции

- Двойственность Лагранжа
 - Двойственная функция Лагранжа
 - Слабая и сильная двойственность
 - Разрыв двойственности
- - Два сценария
 - Интерпретация слабой и сильной теорем двойственности

Задача оптимизации

Будем рассматривать задачу следующего вида:

$$f(x) \to \min,$$

 $g_i(x) \le 0, \quad i \in I = \{1, \dots, m\},$
 $x \in S \subset \mathbb{R}^n.$ (1)

Задача оптимизации

Будем рассматривать задачу следующего вида:

$$f(x) \to \min,$$

 $g_i(x) \le 0, \quad i \in I = \{1, \dots, m\},$
 $x \in S \subseteq \mathbb{R}^n.$ (1)

Двойственная функция Лагранжа

• Двойственная функция Лагранжа $w: \mathbb{R}^m \to \mathbb{R}$, в точке $\lambda \in \mathbb{R}^m$ определяется как минимальное по x значение функции Лагранжа:

$$w(\lambda) \stackrel{\text{def}}{=} \inf_{x \in S} \left(L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) \right).$$

- Заметим, что $w(\lambda) = -\infty$, если $L(x, \lambda)$ неограничена снизу по x на множестве S.
- Поскольку w определяется как поточечный инфимум семейства линейных функций аргумента λ , то w является вогнутой функцией, даже тогда, когда задача (1) не является выпуклой.

Двойственная функция Лагранжа

• Двойственная функция Лагранжа $w: \mathbb{R}^m \to \mathbb{R}$, в точке $\lambda \in \mathbb{R}^m$ определяется как минимальное по x значение функции Лагранжа:

$$w(\lambda) \stackrel{\text{def}}{=} \inf_{x \in S} \left(L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) \right).$$

- Заметим, что $w(\lambda) = -\infty$, если $L(x,\lambda)$ неограничена снизу по x на множестве S.
- Поскольку w определяется как поточечный инфимум семейства линейных функций аргумента λ , то w является вогнутой функцией, даже тогда, когда задача (1) не является выпуклой.

Двойственная функция Лагранжа

• Двойственная функция Лагранжа $w: \mathbb{R}^m \to \mathbb{R}$, в точке $\lambda \in \mathbb{R}^m$ определяется как минимальное по x значение функции Лагранжа:

$$w(\lambda) \stackrel{\text{def}}{=} \inf_{x \in S} \left(L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) \right).$$

- Заметим, что $w(\lambda) = -\infty$, если $L(x, \lambda)$ неограничена снизу по x на множестве S.
- Поскольку w определяется как поточечный инфимум семейства линейных функций аргумента λ , то w является вогнутой функцией, даже тогда, когда задача (1) не является выпуклой.

Нижние границы

- Для любого $\lambda \in \mathbb{R}_+^m$ и любого допустимого решения \tilde{x} задачи (1) имеем
- $w(\lambda) = \inf_{x \in S} L(x, \lambda) \le L(\tilde{x}, \lambda) = f(\tilde{x}) + \sum_{i=1}^{m} \lambda_i g_i(\tilde{x}) \le f(\tilde{x}).$
- Поэтому, если задача (1) имеет оптимальное решение x^* , то $f(x^*) \ge w(\lambda)$ для любого $\lambda \in \mathbb{R}_+^m$.
- Иными словами, значения двойственной функции Лагранжа являются нижними границами для оптимального значения пелевой функции в залаче (1).

Нижние границы

- ullet Для любого $\lambda \in \mathbb{R}^m_+$ и любого допустимого решения $ilde{x}$ задачи (1) имеем
- $w(\lambda) = \inf_{x \in S} L(x, \lambda) \le L(\tilde{x}, \lambda) = f(\tilde{x}) + \sum_{x \in S} \lambda_i g_i(\tilde{x}) \le f(\tilde{x}).$
- Поэтому, если задача (1) имеет оптимальное решение x^* .
- Иными словами, значения двойственной функции

- ullet Для любого $\lambda \in \mathbb{R}^m_+$ и любого допустимого решения $ilde{x}$ задачи (1) имеем
- $w(\lambda) = \inf_{x \in S} L(x, \lambda) \le L(\tilde{x}, \lambda) = f(\tilde{x}) + \sum_{i=1}^{m} \lambda_i g_i(\tilde{x}) \le f(\tilde{x}).$
- Поэтому, если задача (1) имеет оптимальное решение x^* , то $f(x^*) \geq w(\lambda)$ для любого $\lambda \in \mathbb{R}^m_+$.
- Иными словами, значения двойственной функции

- ullet Для любого $\lambda \in \mathbb{R}^m_+$ и любого допустимого решения $ilde{x}$ задачи (1) имеем
- $w(\lambda) = \inf_{x \in S} L(x, \lambda) \le L(\tilde{x}, \lambda) = f(\tilde{x}) + \sum_{i=1}^{m} \lambda_i g_i(\tilde{x}) \le f(\tilde{x}).$
- Поэтому, если задача (1) имеет оптимальное решение x^* , то $f(x^*) > w(\lambda)$ для любого $\lambda \in \mathbb{R}^m_{\perp}$.
- Иными словами, значения двойственной функции Лагранжа являются нижними границами для оптимального значения целевой функции в задаче (1).

Двойственность Лагранжа Экономич. интерпрет. Двойств. ф-ция Двойственность Разрыв двойств.

Двойственная задача Лагранжа

• Чтобы получить наилучшую нижнюю оценку, мы должны решить двойственную задачу Лагранжа для задачи (1):

$$\max_{\lambda \in \mathbb{R}^m_+} w(\lambda). \tag{2}$$

- В контексте двойственности Лагранжа задача (1)
- Векторы множителей Лагранжа $\lambda \in \mathbb{R}^m_+$, для которых
- Оптимальные решения λ^* задачи (2) называют

◆ К слабой теореме двойственности Х ◆ К слабой теореме двойственности

Двойственная задача Лагранжа

• Чтобы получить наилучшую нижнюю оценку, мы должны решить двойственную задачу Лагранжа для задачи (1):

$$\max_{\lambda \in \mathbb{R}^m_+} w(\lambda). \tag{2}$$

- В контексте двойственности Лагранжа задача (1) называется *прямой задачей*.
- Векторы множителей Лагранжа $\lambda \in \mathbb{R}^m_+$, для которых $w(\lambda) > -\infty$, называются двойственно допустимыми.
- Оптимальные решения λ^* задачи (2) называют оптимальными множителями Лагранжа, или просто двойственно оптимальными решениями.

• Чтобы получить наилучшую нижнюю оценку, мы должны решить двойственную задачу Лагранжа для задачи (1):

$$\max_{\lambda \in \mathbb{R}^m_+} w(\lambda). \tag{2}$$

- В контексте двойственности Лагранжа задача (1) называется прямой задачей.
- ullet Векторы множителей Лагранжа $\lambda \in \mathbb{R}^m_+$, для которых $w(\lambda) > -\infty$, называются двойственно допустимыми.
- Оптимальные решения λ^* задачи (2) называют

Двойственная задача Лагранжа

• Чтобы получить наилучшую нижнюю оценку, мы должны решить двойственную задачу Лагранжа для задачи (1):

$$\max_{\lambda \in \mathbb{R}^m_+} w(\lambda). \tag{2}$$

- В контексте двойственности Лагранжа задача (1) называется прямой задачей.
- Векторы множителей Лагранжа $\lambda \in \mathbb{R}^m_+$, для которых $w(\lambda) > -\infty$, называются двойственно допустимыми.
- Оптимальные решения λ^* задачи (2) называют оптимальными множителями Лагранжа, или просто двойственно оптимальными решениями.

План лекции

- 1 Двойственность Лагранжа
 - Двойственная функция Лагранжа
 - Слабая и сильная двойственность
 - Разрыв двойственности
- Экономическая интерпретация ланранжевой двойственности
 - Два сценария
 - Интерпретация слабой и сильной теорем двойственности

Слабая двойственность

Из сказанного выше, вытекает следующий простой, но очень важный, результат.

Теорема (слабая теорема двойственности)

Если х* и λ* есть оптимальные решения соответственно прямой по справедливо неравенство

$$w(\lambda^*) < f(x^*). \tag{3}$$

Слабая двойственность

Из сказанного выше, вытекает следующий простой, но очень важный, результат.

Теорема (слабая теорема двойственности)

Если x^* и λ^* есть оптимальные решения соответственно прямой (1) и двойственной (2) задач, то справедливо неравенство

$$w(\lambda^*) \le f(x^*). \tag{3}$$

Слабая двойственность

Из сказанного выше, вытекает следующий простой, но очень важный, результат.

Теорема (слабая теорема двойственности)

Если x^* и λ^* есть оптимальные решения соответственно прямой •(1) и двойственной •(2) задач, то справедливо неравенство

$$w(\lambda^*) \le f(x^*). \tag{3}$$

Следующая теорема дает ответ на вопрос о том, когда оптимальные значения целевых функций в прямой и двойственной задачах совпадают.

Теорема (сильная теорема двойственности)

Если x^* и λ^* есть оптимальные решения соответственно прямой (0) и двойственной (0) задач, то $w(\lambda^*) = f(x^*)$ тогда и только тогда, когда пара (x^*, λ^*) образует седловую точку функции Лагранжа $L(x, \lambda)$.

Следствие

Сильная теорема двойственности справедлива для задач выпуклого программирования.

Перейти к доказательству

Следующая теорема дает ответ на вопрос о том, когда оптимальные значения целевых функций в прямой и двойственной задачах совпадают.

Теорема (сильная теорема двойственности)

Если x^* и λ^* есть оптимальные решения соответственно прямой •(1) и двойственной •(2) задач, то $w(\lambda^*) = f(x^*)$ тогда и только тогда, когда пара (x^*, λ^*) образует седловую точку функции Лагранэнса $L(x, \lambda)$.

Следствие

Сильная теорема двойственности справедлива для задач выпуклого программирования.

Перейти к доказательству

Следующая теорема дает ответ на вопрос о том, когда оптимальные значения целевых функций в прямой и двойственной задачах совпадают.

Теорема (сильная теорема двойственности)

Если x^* и λ^* есть оптимальные решения соответственно прямой (1) и двойственной (2) задач, то $w(\lambda^*) = f(x^*)$ тогда и только тогда, когда пара (x^*, λ^*) образует седловую точку функции Лагранжа $L(x, \lambda)$.

Следствие

Сильная теорема двойственности справедлива для задач выпуклого программирования.

Следующая теорема дает ответ на вопрос о том, когда оптимальные значения целевых функций в прямой и двойственной задачах совпадают.

Теорема (сильная теорема двойственности)

Если x^* и λ^* есть оптимальные решения соответственно прямой (1) и двойственной (2) задач, то $w(\lambda^*) = f(x^*)$ тогда и только тогда, когда пара (x^*, λ^*) образует седловую точку функции Лагранжа $L(x, \lambda)$.

Следствие

Сильная теорема двойственности справедлива для задач выпуклого программирования.

Следующая теорема дает ответ на вопрос о том, когда оптимальные значения целевых функций в прямой и двойственной задачах совпадают.

Теорема (сильная теорема двойственности)

Если x^* и λ^* есть оптимальные решения соответственно прямой (1) и двойственной (2) задач, то $w(\lambda^*) = f(x^*)$ тогда и только тогда, когда пара (x^*, λ^*) образует седловую точку функции Лагранжа $L(x, \lambda)$.

Следствие

Сильная теорема двойственности справедлива для задач выпуклого программирования.

Следующая теорема дает ответ на вопрос о том, когда оптимальные значения целевых функций в прямой и двойственной задачах совпадают.

Теорема (сильная теорема двойственности)

Если x^* и λ^* есть оптимальные решения соответственно прямой (1) и двойственной (2) задач, то $w(\lambda^*) = f(x^*)$ тогда и только тогда, когда пара (x^*, λ^*) образует седловую точку функции Лагранжа $L(x, \lambda)$.

Следствие

Сильная теорема двойственности справедлива для задач выпуклого программирования.

Перейти к доказательству

Пример вычисления двойственной функции Лагранжа

Решить оптимизационную задачу

$$x_1^2 - x_1 + x_2^2 \rightarrow \min$$
,
 $2x_1 + 4x_2 \le -1$,

предварительно решив двойственную задачу.

Пример вычисления двойственной функции Лагранжа

Решить оптимизационную задачу

$$x_1^2 - x_1 + x_2^2 \rightarrow \min,$$

 $2x_1 + 4x_2 \le -1,$

предварительно решив двойственную задачу.

- ullet Эдесь $S=\mathbb{R}^2$ и обе функции $f(x_1,x_2)=x_1^2-x_1+x_2^2 \quad \text{и} \quad g_1(x_1,x_2)=2x_1+4x_2+1$ выпуклы.
- Поэтому функция Лагранжа $L(x,\lambda) = L(x_1,x_2,\lambda_1) = x_1^2 x_1 + x_2^2 + 2\lambda_1 x_1 + 4\lambda_1 x_2 + \lambda_1$
- имеет седловую точку (x^*, λ^*) и $f(x^*) = w(\lambda^*)$.
- Минимум по x функции $L(x, \lambda)$ найдем из условий оптимальности первого порядка:

$$\frac{\partial}{\partial x_1} L(x,\lambda) = 2x_1 - 1 + 2\lambda_1 = 0 \quad \Rightarrow \quad x_1 = 1/2 - \lambda_1,$$

$$\frac{\partial}{\partial x_2} L(x,\lambda) = 2x_2 + 4\lambda_1 = 0 \quad \Rightarrow \quad x_2 = -2\lambda_1.$$

- ullet Эдесь $S=\mathbb{R}^2$ и обе функции $f(x_1,x_2)=x_1^2-x_1+x_2^2 \quad \text{и} \quad g_1(x_1,x_2)=2x_1+4x_2+1$ выпуклы.
- Поэтому функция Лагранжа $L(x,\lambda) = L(x_1,x_2,\lambda_1) = x_1^2 x_1 + x_2^2 + 2\lambda_1 x_1 + 4\lambda_1 x_2 + \lambda_1$
- имеет седловую точку (x^*, λ^*) и $f(x^*) = w(\lambda^*)$.
- Минимум по x функции $L(x, \lambda)$ найдем из условий оптимальности первого порядка:

$$\frac{\partial}{\partial x_1} L(x,\lambda) = 2x_1 - 1 + 2\lambda_1 = 0 \quad \Rightarrow \quad x_1 = 1/2 - \lambda_1,$$

$$\frac{\partial}{\partial x_2} L(x,\lambda) = 2x_2 + 4\lambda_1 = 0 \quad \Rightarrow \quad x_2 = -2\lambda_1.$$

- Здесь $S=\mathbb{R}^2$ и обе функции $f(x_1,x_2)=x_1^2-x_1+x_2^2\quad \text{и}\quad g_1(x_1,x_2)=2x_1+4x_2+1$ выпуклы.
- Поэтому функция Лагранжа

$$L(x,\lambda) = L(x_1, x_2, \lambda_1) = x_1^2 - x_1 + x_2^2 + 2\lambda_1 x_1 + 4\lambda_1 x_2 + \lambda_1$$

- ullet имеет седловую точку (x^*,λ^*) и $f(x^*)=w(\lambda^*).$
- Минимум по x функции $L(x, \lambda)$ найдем из условий оптимальности первого порядка:

$$\frac{\partial}{\partial x_1} L(x,\lambda) = 2x_1 - 1 + 2\lambda_1 = 0 \quad \Rightarrow \quad x_1 = 1/2 - \lambda_1,$$

$$\frac{\partial}{\partial x_1} L(x,\lambda) = 2x_2 + 4\lambda_1 = 0 \quad \Rightarrow \quad x_2 = -2\lambda_1.$$

- ullet Эдесь $S=\mathbb{R}^2$ и обе функции $f(x_1,x_2)=x_1^2-x_1+x_2^2 \quad \text{и} \quad g_1(x_1,x_2)=2x_1+4x_2+1$ выпуклы.
- Поэтому функция Лагранжа

$$L(x,\lambda) = L(x_1, x_2, \lambda_1) = x_1^2 - x_1 + x_2^2 + 2\lambda_1 x_1 + 4\lambda_1 x_2 + \lambda_1$$

- имеет седловую точку (x^*, λ^*) и $f(x^*) = w(\lambda^*)$.
- Минимум по x функции $L(x, \lambda)$ найдем из условий оптимальности первого порядка:

$$\frac{\partial}{\partial x_1} L(x, \lambda) = 2x_1 - 1 + 2\lambda_1 = 0 \quad \Rightarrow \quad x_1 = 1/2 - \lambda_1,$$

$$\frac{\partial}{\partial x_2} L(x, \lambda) = 2x_2 + 4\lambda_1 = 0 \quad \Rightarrow \quad x_2 = -2\lambda_1.$$

- ullet Эдесь $S=\mathbb{R}^2$ и обе функции $f(x_1,x_2)=x_1^2-x_1+x_2^2 \quad \text{и} \quad g_1(x_1,x_2)=2x_1+4x_2+1$ выпуклы.
- Поэтому функция Лагранжа

$$L(x,\lambda) = L(x_1, x_2, \lambda_1) = x_1^2 - x_1 + x_2^2 + 2\lambda_1 x_1 + 4\lambda_1 x_2 + \lambda_1$$

- имеет седловую точку (x^*, λ^*) и $f(x^*) = w(\lambda^*)$.
- Минимум по x функции $L(x, \lambda)$ найдем из условий оптимальности первого порядка:

$$\frac{\partial}{\partial x_1} L(x, \lambda) = 2x_1 - 1 + 2\lambda_1 = 0 \quad \Rightarrow \quad x_1 = 1/2 - \lambda_1,$$

$$\frac{\partial}{\partial x_2} L(x, \lambda) = 2x_2 + 4\lambda_1 = 0 \quad \Rightarrow \quad x_2 = -2\lambda_1.$$

- ullet Эдесь $S=\mathbb{R}^2$ и обе функции $f(x_1,x_2)=x_1^2-x_1+x_2^2 \quad \text{и} \quad g_1(x_1,x_2)=2x_1+4x_2+1$ выпуклы.
- Поэтому функция Лагранжа

$$L(x,\lambda) = L(x_1, x_2, \lambda_1) = x_1^2 - x_1 + x_2^2 + 2\lambda_1 x_1 + 4\lambda_1 x_2 + \lambda_1$$

- имеет седловую точку (x^*, λ^*) и $f(x^*) = w(\lambda^*)$.
- Минимум по x функции $L(x, \lambda)$ найдем из условий оптимальности первого порядка:

$$\frac{\partial}{\partial x_1} L(x, \lambda) = 2x_1 - 1 + 2\lambda_1 = 0 \quad \Rightarrow \quad x_1 = 1/2 - \lambda_1,$$

$$\frac{\partial}{\partial x_2} L(x, \lambda) = 2x_2 + 4\lambda_1 = 0 \quad \Rightarrow \quad x_2 = -2\lambda_1.$$

- ullet Эдесь $S=\mathbb{R}^2$ и обе функции $f(x_1,x_2)=x_1^2-x_1+x_2^2 \quad \text{и} \quad g_1(x_1,x_2)=2x_1+4x_2+1$ выпуклы.
- Поэтому функция Лагранжа

$$L(x,\lambda) = L(x_1, x_2, \lambda_1) = x_1^2 - x_1 + x_2^2 + 2\lambda_1 x_1 + 4\lambda_1 x_2 + \lambda_1$$

- имеет седловую точку (x^*, λ^*) и $f(x^*) = w(\lambda^*)$.
- Минимум по x функции $L(x, \lambda)$ найдем из условий оптимальности первого порядка:

$$\frac{\partial}{\partial x_1} L(x, \lambda) = 2x_1 - 1 + 2\lambda_1 = 0 \quad \Rightarrow \quad x_1 = 1/2 - \lambda_1,$$

$$\frac{\partial}{\partial x_2} L(x, \lambda) = 2x_2 + 4\lambda_1 = 0 \quad \Rightarrow \quad x_2 = -2\lambda_1.$$

- ullet Эдесь $S=\mathbb{R}^2$ и обе функции $f(x_1,x_2)=x_1^2-x_1+x_2^2 \quad \text{и} \quad g_1(x_1,x_2)=2x_1+4x_2+1$ выпуклы.
- Поэтому функция Лагранжа

$$L(x,\lambda) = L(x_1, x_2, \lambda_1) = x_1^2 - x_1 + x_2^2 + 2\lambda_1 x_1 + 4\lambda_1 x_2 + \lambda_1$$

- имеет седловую точку (x^*, λ^*) и $f(x^*) = w(\lambda^*)$.
- Минимум по x функции $L(x, \lambda)$ найдем из условий оптимальности первого порядка:

$$\frac{\partial}{\partial x_1} L(x, \lambda) = 2x_1 - 1 + 2\lambda_1 = 0 \quad \Rightarrow \quad x_1 = 1/2 - \lambda_1,$$

$$\frac{\partial}{\partial x_2} L(x, \lambda) = 2x_2 + 4\lambda_1 = 0 \quad \Rightarrow \quad x_2 = -2\lambda_1.$$

- ullet Эдесь $S=\mathbb{R}^2$ и обе функции $f(x_1,x_2)=x_1^2-x_1+x_2^2 \quad \text{и} \quad g_1(x_1,x_2)=2x_1+4x_2+1$ выпуклы.
- Поэтому функция Лагранжа

$$L(x,\lambda) = L(x_1, x_2, \lambda_1) = x_1^2 - x_1 + x_2^2 + 2\lambda_1 x_1 + 4\lambda_1 x_2 + \lambda_1$$

- имеет седловую точку (x^*, λ^*) и $f(x^*) = w(\lambda^*)$.
- Минимум по x функции $L(x, \lambda)$ найдем из условий оптимальности первого порядка:

$$\frac{\partial}{\partial x_1} L(x, \lambda) = 2x_1 - 1 + 2\lambda_1 = 0 \quad \Rightarrow \quad x_1 = 1/2 - \lambda_1,$$

$$\frac{\partial}{\partial x_2} L(x, \lambda) = 2x_2 + 4\lambda_1 = 0 \quad \Rightarrow \quad x_2 = -2\lambda_1.$$

- ullet Эдесь $S=\mathbb{R}^2$ и обе функции $f(x_1,x_2)=x_1^2-x_1+x_2^2 \quad \text{и} \quad g_1(x_1,x_2)=2x_1+4x_2+1$ выпуклы.
- Поэтому функция Лагранжа

$$L(x,\lambda) = L(x_1, x_2, \lambda_1) = x_1^2 - x_1 + x_2^2 + 2\lambda_1 x_1 + 4\lambda_1 x_2 + \lambda_1$$

- имеет седловую точку (x^*, λ^*) и $f(x^*) = w(\lambda^*)$.
- Минимум по x функции $L(x, \lambda)$ найдем из условий оптимальности первого порядка:

$$\frac{\partial}{\partial x_1} L(x, \lambda) = 2x_1 - 1 + 2\lambda_1 = 0 \quad \Rightarrow \quad x_1 = 1/2 - \lambda_1,$$

$$\frac{\partial}{\partial x_2} L(x, \lambda) = 2x_2 + 4\lambda_1 = 0 \quad \Rightarrow \quad x_2 = -2\lambda_1.$$

- ullet Эдесь $S=\mathbb{R}^2$ и обе функции $f(x_1,x_2)=x_1^2-x_1+x_2^2 \quad \text{и} \quad g_1(x_1,x_2)=2x_1+4x_2+1$ выпуклы.
- Поэтому функция Лагранжа $L(x,\lambda) = L(x_1,x_2,\lambda_1) = x_1^2 x_1 + x_2^2 + 2\lambda_1 x_1 + 4\lambda_1 x_2 + \lambda_1$
- имеет седловую точку (x^*, λ^*) и $f(x^*) = w(\lambda^*)$.
- Минимум по x функции $L(x, \lambda)$ найдем из условий оптимальности первого порядка:

$$\frac{\partial}{\partial x_1} L(x,\lambda) = 2x_1 - 1 + 2\lambda_1 = 0 \quad \Rightarrow \quad x_1 = 1/2 - \lambda_1,$$

$$\frac{\partial}{\partial x_2} L(x,\lambda) = 2x_2 + 4\lambda_1 = 0 \quad \Rightarrow \quad x_2 = -2\lambda_1.$$

- ullet Эдесь $S=\mathbb{R}^2$ и обе функции $f(x_1,x_2)=x_1^2-x_1+x_2^2 \quad \text{и} \quad g_1(x_1,x_2)=2x_1+4x_2+1$ выпуклы.
- Поэтому функция Лагранжа $L(x,\lambda) = L(x_1,x_2,\lambda_1) = x_1^2 x_1 + x_2^2 + 2\lambda_1 x_1 + 4\lambda_1 x_2 + \lambda_1$

- имеет седловую точку (x^*, λ^*) и $f(x^*) = w(\lambda^*)$.
- Минимум по x функции $L(x, \lambda)$ найдем из условий оптимальности первого порядка:

$$\frac{\partial}{\partial x_1} L(x,\lambda) = 2x_1 - 1 + 2\lambda_1 = 0 \quad \Rightarrow \quad x_1 = 1/2 - \lambda_1,$$

$$\frac{\partial}{\partial x_2} L(x,\lambda) = 2x_2 + 4\lambda_1 = 0 \quad \Rightarrow \quad x_2 = -2\lambda_1.$$

- Подставляя $x_1=1/2-\lambda_1$ и $x_2=-2\lambda_1$ в выражение для $L(x,\lambda)=L(x_1,x_2,\lambda_1)=x_1^2-x_1+x_2^2+2\lambda_1x_1+4\lambda_1x_2+\lambda_1$,
- получим двойственную функцию

$$w(\lambda_1) = (1/2 - \lambda_1)^2 - (1/2 - \lambda_1) + 4\lambda_1^2 + 2\lambda_1(1/2 - \lambda_1) - 8\lambda_1^2 + \lambda_1$$
$$= -5\lambda_1^2 + 2\lambda_1 - 1/4.$$

 Как и должно быть, двойственная функция вогнута. Ее максимум найдем из условия:

$$w'(\lambda_1) = -10\lambda_1 + 2 = 0 \implies \lambda_1^* = 1/5.$$

$$x_1^* = 1/2 - \lambda_1^* = 1/2 - 1/5 = 3/10,$$

 $x_2^* = -2\lambda_1^* = -2/5.$

- Подставляя $x_1=1/2-\lambda_1$ и $x_2=-2\lambda_1$ в выражение для $L(x,\lambda)=L(x_1,x_2,\lambda_1)=x_1^2-x_1+x_2^2+2\lambda_1x_1+4\lambda_1x_2+\lambda_1$,
- получим двойственную функцию

$$w(\lambda_1) = (1/2 - \lambda_1)^2 - (1/2 - \lambda_1) + 4\lambda_1^2$$
$$+2\lambda_1(1/2 - \lambda_1) - 8\lambda_1^2 + \lambda_1$$
$$= -5\lambda_1^2 + 2\lambda_1 - 1/4.$$

 Как и должно быть, двойственная функция вогнута. Ее максимум найдем из условия:

$$w'(\lambda_1) = -10\lambda_1 + 2 = 0 \implies \lambda_1^* = 1/5.$$

$$x_1^* = 1/2 - \lambda_1^* = 1/2 - 1/5 = 3/10,$$

 $x_2^* = -2\lambda_1^* = -2/5.$

- Подставляя $x_1=1/2-\lambda_1$ и $x_2=-2\lambda_1$ в выражение для $L(x,\lambda)=L(x_1,x_2,\lambda_1)=x_1^2-x_1+x_2^2+2\lambda_1x_1+4\lambda_1x_2+\lambda_1$,
- получим двойственную функцию

$$w(\lambda_1) = (1/2 - \lambda_1)^2 - (1/2 - \lambda_1) + 4\lambda_1^2$$
$$+2\lambda_1(1/2 - \lambda_1) - 8\lambda_1^2 + \lambda_1$$
$$= -5\lambda_1^2 + 2\lambda_1 - 1/4.$$

 Как и должно быть, двойственная функция вогнута. Ее максимум найдем из условия:

$$w'(\lambda_1) = -10\lambda_1 + 2 = 0 \implies \lambda_1^* = 1/5.$$

$$\kappa_1^* = 1/2 - \lambda_1^* = 1/2 - 1/5 = 3/10,$$

 $\kappa_2^* = -2\lambda_1^* = -2/5.$

- Подставляя $x_1=1/2-\lambda_1$ и $x_2=-2\lambda_1$ в выражение для $L(x,\lambda)=L(x_1,x_2,\lambda_1)=x_1^2-x_1+x_2^2+2\lambda_1x_1+4\lambda_1x_2+\lambda_1\,,$
- получим двойственную функцию

$$w(\lambda_1) = (1/2 - \lambda_1)^2 - (1/2 - \lambda_1) + 4\lambda_1^2$$
$$+2\lambda_1(1/2 - \lambda_1) - 8\lambda_1^2 + \lambda_1$$
$$= -5\lambda_1^2 + 2\lambda_1 - 1/4.$$

• Как и должно быть, двойственная функция вогнута. Ее максимум найдем из условия:

$$w'(\lambda_1) = -10\lambda_1 + 2 = 0 \implies \lambda_1^* = 1/5.$$

$$x_1^* = 1/2 - \lambda_1^* = 1/2 - 1/5 = 3/10,$$

 $x_2^* = -2\lambda_1^* = -2/5.$

- Подставляя $x_1=1/2-\lambda_1$ и $x_2=-2\lambda_1$ в выражение для $L(x,\lambda)=L(x_1,x_2,\lambda_1)=x_1^2-x_1+x_2^2+2\lambda_1x_1+4\lambda_1x_2+\lambda_1$,
- получим двойственную функцию

$$w(\lambda_1) = (1/2 - \lambda_1)^2 - (1/2 - \lambda_1) + 4\lambda_1^2$$
$$+2\lambda_1(1/2 - \lambda_1) - 8\lambda_1^2 + \lambda_1$$
$$= -5\lambda_1^2 + 2\lambda_1 - 1/4.$$

 Как и должно быть, двойственная функция вогнута. Ее максимум найдем из условия:

$$w'(\lambda_1) = -10\lambda_1 + 2 = 0 \implies \lambda_1^* = 1/5.$$

$$x_1^* = 1/2 - \lambda_1^* = 1/2 - 1/5 = 3/10,$$

 $x_2^* = -2\lambda_1^* = -2/5.$

План лекции

- 1 Двойственность Лагранжа
 - Двойственная функция Лагранжа
 - Слабая и сильная двойственность
 - Разрыв двойственности
- Экономическая интерпретация ланранжевой двойственности
 - Два сценария
 - Интерпретация слабой и сильной теорем двойственности

- В тех случаях, когда сильная теорема двойственности не выполняется, говорят, что имеет место *разрыв* двойственности,
- величина которого равна $f(x^*) w(\lambda^*)$, где x^* и λ^* есть оптимальные решения соответственно
- прямой $(\min\{f(x): g_i(x) \le 0, i \in I; x \in S\}),$
- и двойственной $(\max\{w(\lambda): \lambda \in \mathbb{R}^m_+\})$ задач.
- К сожалению, разрыв двойственности присущ очень многим важным классам оптимизационных задач.
- Как правило, задачи с разрывом двоственности очень трудны с вычислительной точки зрения.
- В частности, разрыв двойственности имеет место в з-чах целочисленного программирования (когда $S \subset \mathbb{Z}^n$).

- В тех случаях, когда сильная теорема двойственности не выполняется, говорят, что имеет место разрыв двойственности,
- величина которого равна $f(x^*) w(\lambda^*)$, где x^* и λ^* есть оптимальные решения соответственно
- прямой $(\min\{f(x): g_i(x) \le 0, i \in I; x \in S\}),$
- ullet и двойственной $\left(\max\{w(\lambda):\ \lambda\in\mathbb{R}^m_+\}
 ight)$ задач.
- К сожалению, разрыв двойственности присущ очень многим важным классам оптимизационных задач.
- Как правило, задачи с разрывом двоственности очень трудны с вычислительной точки зрения.
- В частности, разрыв двойственности имеет место в з-чах целочисленного программирования (когда $S \subseteq \mathbb{Z}^n$).

- В тех случаях, когда сильная теорема двойственности не выполняется, говорят, что имеет место разрыв двойственности,
- величина которого равна $f(x^*) w(\lambda^*)$, где x^* и λ^* есть оптимальные решения соответственно
- прямой $(\min\{f(x): g_i(x) \le 0, i \in I; x \in S\}),$
- и двойственной $(\max\{w(\lambda): \lambda \in \mathbb{R}^m_+\})$ задач.
- К сожалению, разрыв двойственности присущ очень многим важным классам оптимизационных задач.
- Как правило, задачи с разрывом двоственности очень трудны с вычислительной точки зрения.
- В частности, разрыв двойственности имеет место в з-чах целочисленного программирования (когда $S \subseteq \mathbb{Z}^n$).

- В тех случаях, когда сильная теорема двойственности не выполняется, говорят, что имеет место разрыв двойственности,
- величина которого равна $f(x^*) w(\lambda^*)$, где x^* и λ^* есть оптимальные решения соответственно
- прямой $(\min\{f(x): g_i(x) \le 0, i \in I; x \in S\}),$
- ullet и двойственной $(\max\{w(\lambda): \lambda \in \mathbb{R}^m_+\})$ задач.
- К сожалению, разрыв двойственности присущ очень многим важным классам оптимизационных задач.
- Как правило, задачи с разрывом двоственности очень трудны с вычислительной точки зрения.
- В частности, разрыв двойственности имеет место в з-чах целочисленного программирования (когда $S \subseteq \mathbb{Z}^n$).

- В тех случаях, когда сильная теорема двойственности не выполняется, говорят, что имеет место разрыв двойственности,
- величина которого равна $f(x^*) w(\lambda^*)$, где x^* и λ^* есть оптимальные решения соответственно
- прямой $(\min\{f(x): g_i(x) \le 0, i \in I; x \in S\}),$
- ullet и двойственной $(\max\{w(\lambda): \lambda \in \mathbb{R}^m_+\})$ задач.
- К сожалению, разрыв двойственности присущ очень многим важным классам оптимизационных задач.
- Как правило, задачи с разрывом двоственности очень трудны с вычислительной точки зрения.
- В частности, разрыв двойственности имеет место в з-чах целочисленного программирования (когда $S \subseteq \mathbb{Z}^n$).

- В тех случаях, когда сильная теорема двойственности не выполняется, говорят, что имеет место разрыв двойственности,
- величина которого равна $f(x^*) w(\lambda^*)$, где x^* и λ^* есть оптимальные решения соответственно
- прямой $(\min\{f(x): g_i(x) \le 0, i \in I; x \in S\}),$
- ullet и двойственной $(\max\{w(\lambda): \lambda \in \mathbb{R}^m_+\})$ задач.
- К сожалению, разрыв двойственности присущ очень многим важным классам оптимизационных задач.
- Как правило, задачи с разрывом двоственности очень трудны с вычислительной точки зрения.
- В частности, разрыв двойственности имеет место в з-чах целочисленного программирования (когда $S \subseteq \mathbb{Z}^n$).

- В тех случаях, когда сильная теорема двойственности не выполняется, говорят, что имеет место разрыв двойственности,
- величина которого равна $f(x^*) w(\lambda^*)$, где x^* и λ^* есть оптимальные решения соответственно
- прямой $(\min\{f(x): g_i(x) \le 0, i \in I; x \in S\}),$
- ullet и двойственной $(\max\{w(\lambda): \lambda \in \mathbb{R}^m_+\})$ задач.
- К сожалению, разрыв двойственности присущ очень многим важным классам оптимизационных задач.
- Как правило, задачи с разрывом двоственности очень трудны с вычислительной точки зрения.
- В частности, разрыв двойственности имеет место в з-чах целочисленного программирования (когда $S \subseteq \mathbb{Z}^n$).

Пример задачи с разрывом двойственности

Вычислить разрыв двойственности для следующей оптимизационной задачи:

$$2x_1 + x_2 + 3x_3 \rightarrow \min,$$

 $2x_1 + 2x_2 + 3x_3 \ge 3,$
 $x_1, x_2, x_3 \in \{0, 1\}.$

▶ Вернуться к решению.

Пример задачи с разрывом двойственности

Вычислить разрыв двойственности для следующей оптимизационной задачи:

$$2x_1 + x_2 + 3x_3 \to \min, 2x_1 + 2x_2 + 3x_3 \ge 3, x_1, x_2, x_3 \in \{0, 1\}.$$

Вернуться к решению

• Здесь $S = \{0, 1\}^3$ и $f(x) = 2x_1 + x_2 + 3x_3, \quad g_1(x) = -2x_1 - 2x_2 - 3x_3 + 3.$

• Поэтому функция Лагранжа имеет следующий вид:

$$L(x,\lambda) = 2x_1 + x_2 + 3x_3 + \lambda(3 - 2x_1 - 2x_2 - 3x_3)$$

• Теперь запишем двойственную функцию

$$w(\lambda) = \min_{x \in \{0,1\}^3} L(x,\lambda) = \min_{1 \le i \le 8} w_i(\lambda),$$

• где векторы x^i и функции $w_i(\lambda) \stackrel{\mathrm{def}}{=} L(x^i, \lambda)$ следующие:

i	χ^i	$w_i(\lambda)$
1	(0,0,0)	3λ
2	(0,0,1)	3
3	(0,1,0)	$1 + \lambda$
4	(0,1,1)	$4-2\lambda$
5	(1,0,0)	$2 + \lambda$
6	(1,0,1)	$5-2\lambda$
7	(1,1,0)	$3-\lambda$
8	(1, 1, 1)	$6-4\lambda$

- Здесь $S = \{0, 1\}^3$ и $f(x) = 2x_1 + x_2 + 3x_3, \quad g_1(x) = -2x_1 2x_2 3x_3 + 3.$
- Поэтому функция Лагранжа имеет следующий вид:

$$L(x,\lambda) = 2x_1 + x_2 + 3x_3 + \lambda(3 - 2x_1 - 2x_2 - 3x_3).$$

• Теперь запишем двойственную функцию

$$w(\lambda) = \min_{x \in \{0,1\}^3} L(x,\lambda) = \min_{1 \le i \le 8} w_i(\lambda),$$

• где векторы x^i и функции $w_i(\lambda) \stackrel{\mathrm{def}}{=} L(x^i, \lambda)$ следующие:

i	x^{i}	$w_i(\lambda)$
1	(0,0,0)	3λ
2	(0,0,1)	3
3	(0, 1, 0)	$1 + \lambda$
4	(0,1,1)	$4-2\lambda$
5	(1,0,0)	$2 + \lambda$
6	(1,0,1)	$5-2\lambda$
7	(1, 1, 0)	$3-\lambda$
8	(1, 1, 1)	$6-4\lambda$

- Здесь $S = \{0, 1\}^3$ и $f(x) = 2x_1 + x_2 + 3x_3, \quad g_1(x) = -2x_1 2x_2 3x_3 + 3.$
- Поэтому функция Лагранжа имеет следующий вид:

$$L(x,\lambda) = 2x_1 + x_2 + 3x_3 + \lambda(3 - 2x_1 - 2x_2 - 3x_3).$$

• Теперь запишем двойственную функцию

$$w(\lambda) = \min_{x \in \{0,1\}^3} L(x,\lambda) = \min_{1 \le i \le 8} w_i(\lambda),$$

• где векторы x^i и функции $w_i(\lambda) \stackrel{\text{def}}{=} L(x^i, \lambda)$ следующие:

i	χ^i	$w_i(\lambda)$
1	(0,0,0)	3λ
2	(0,0,1)	3
3	(0, 1, 0)	$1 + \lambda$
4	(0,1,1)	$4-2\lambda$
5	(1,0,0)	$2 + \lambda$
6	(1,0,1)	$5-2\lambda$
7	(1, 1, 0)	$3-\lambda$
8	(1, 1, 1)	$6-4\lambda$

- Здесь $S = \{0, 1\}^3$ и $f(x) = 2x_1 + x_2 + 3x_3, \quad g_1(x) = -2x_1 2x_2 3x_3 + 3.$
- Поэтому функция Лагранжа имеет следующий вид: $L(x,\lambda) = 2x_1 + x_2 + 3x_3 + \lambda(3 2x_1 2x_2 3x_3).$
- Теперь запишем двойственную функцию

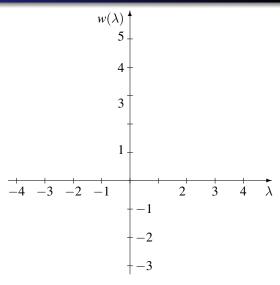
$$w(\lambda) = \min_{x \in \{0,1\}^3} L(x,\lambda) = \min_{1 \le i \le 8} w_i(\lambda),$$

• где векторы x^i и функции $w_i(\lambda) \stackrel{\text{def}}{=} L(x^i, \lambda)$ следующие:

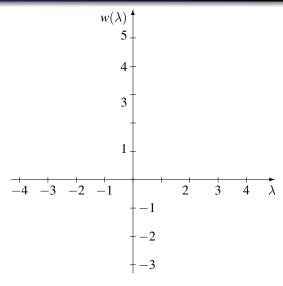
- 1	i	x^{i}	$w_i(\lambda)$
1		(0, 0, 0)	3λ
2	2	(0, 0, 1)	3
3	3	(0, 1, 0)	$1 + \lambda$
4	ŀ	(0, 1, 1)	$4-2\lambda$
5	5	(1, 0, 0)	$2 + \lambda$
6	5	(1, 0, 1)	$5-2\lambda$
7	7	(1, 1, 0)	$3 - \lambda$
8	3	(1, 1, 1)	$6-4\lambda$

- Πостроим график ф-ции w(λ).
- Рисуем графики функций $w_i(\lambda)$.
- Строим нижнюю огибающую этих восьми
- Это и есть график функции w(λ

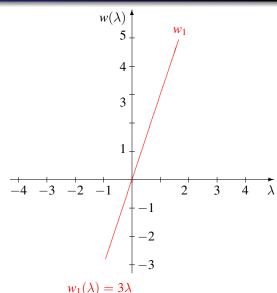
- Πостроим график ф-ции w(λ).
- Рисуем графики функций $w_i(\lambda)$.
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график



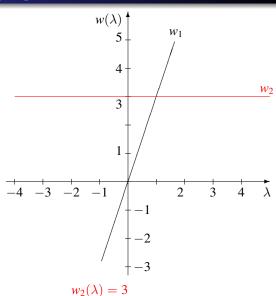
- Πостроим график ф-ции w(λ).
- Рисуем графики функций $w_i(\lambda)$.
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график



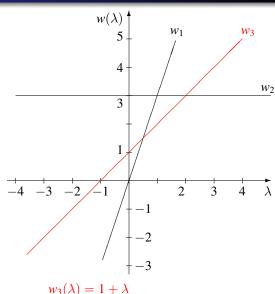
- Πостроим график ф-ции w(λ).
- Рисуем графики функций $w_i(\lambda)$.
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график



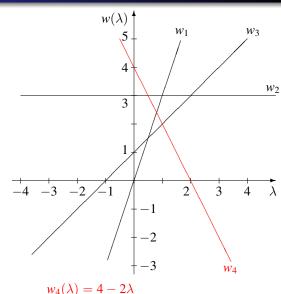
- Πостроим график ф-ции w(λ).
- Рисуем графики функций $w_i(\lambda)$.
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график функции w(



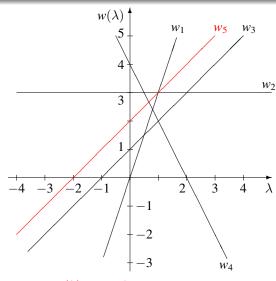
- Πостроим график ф-ции w(λ).
- Рисуем графики функций $w_i(\lambda)$.
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график функции w(...



- Πостроим график ф-ции w(λ).
- Рисуем графики функций $w_i(\lambda)$.
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график функции w(

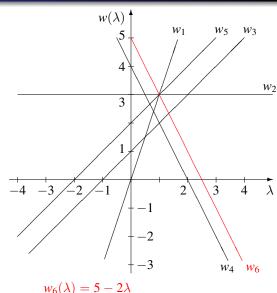


- Πостроим график ф-ции w(λ).
- Рисуем
 графики
 функций $w_i(\lambda)$.
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график функции w(

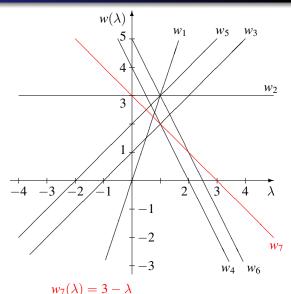


$$w_5(\lambda) = 2 + \lambda$$

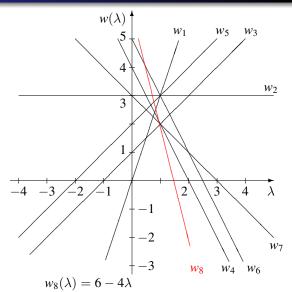
- Построим график ф-ции $w(\lambda)$.
- Рисуем графики функций $w_i(\lambda)$.
- Строим
- Это и есть



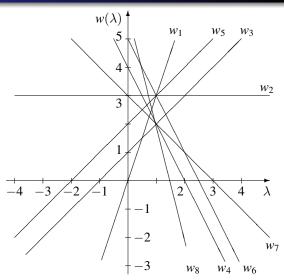
- Πостроим график ф-ции w(λ).
- Рисуем графики функций $w_i(\lambda)$.
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график функции w()



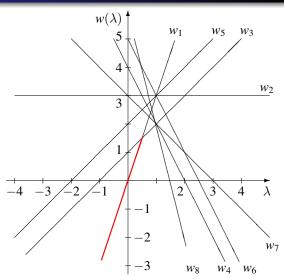
- Πостроим график ф-ции w(λ).
- Рисуем графики функций w_i(λ).
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график функции w(



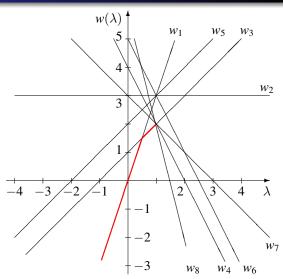
- Πостроим график ф-ции w(λ).
- Рисуем графики функций w_i(λ).
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график функции w



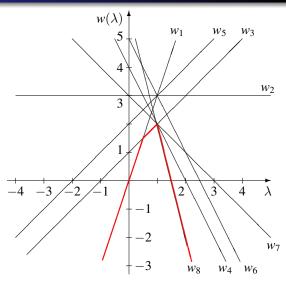
- Πостроим график ф-ции w(λ).
- Рисуем графики функций w_i(λ).
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график функции w(



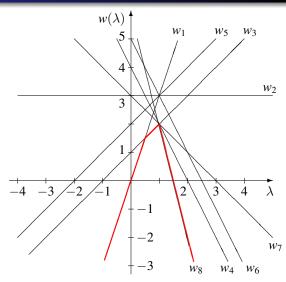
- Πостроим график ф-ции w(λ).
- Рисуем графики функций $w_i(\lambda)$.
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график функции w(



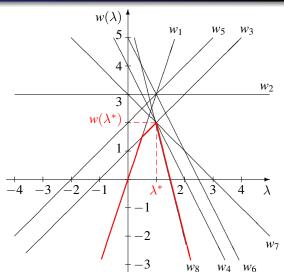
- Πостроим график ф-ции w(λ).
- Рисуем графики функций w_i(λ).
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график функции w()



- Πостроим график ф-ции w(λ).
- Рисуем графики функций w_i(λ).
- Строим нижнюю огибающую этих восьми прямых.
- Это и есть график функции w(λ).



• В точке λ^* максимума функции $w(\lambda)$ пересекаются графики функций $w_3(\lambda)$ и $w_8(\lambda)$.



$$1 + \lambda = 6 - 4\lambda \quad \Rightarrow \quad \lambda^* = 1.$$

- Теперь вычислим $w(\lambda^*) = w_3(\lambda^*) = 1 + \lambda^* = 2$.
- \bullet В нашей задаче два оптимальных решения: $x^* = (1, 1, 0)$ и $x^0 = (0, 0, 1)$ с $f(x^*) = f(x^0) = 3$.
- Поэтому разрыв двойственности для этой задачи равен $f(x^*) w(\lambda^*) = 3 2 = 1 > 0.$

$$1 + \lambda = 6 - 4\lambda \quad \Rightarrow \quad \lambda^* = 1.$$

- Теперь вычислим $w(\lambda^*) = w_3(\lambda^*) = 1 + \lambda^* = 2$.
- \bullet В нашей задаче два оптимальных решения: $x^* = (1, 1, 0)$ и $x^0 = (0, 0, 1)$ с $f(x^*) = f(x^0) = 3$.
- Поэтому разрыв двойственности для этой задачи равен $f(x^*) w(\lambda^*) = 3 2 = 1 > 0.$

$$1 + \lambda = 6 - 4\lambda \quad \Rightarrow \quad \lambda^* = 1.$$

- Теперь вычислим $w(\lambda^*) = w_3(\lambda^*) = 1 + \lambda^* = 2$.
- В нашей задаче два оптимальных решения: $x^* = (1, 1, 0)$ и $x^0 = (0, 0, 1)$ с $f(x^*) = f(x^0) = 3$.
- Поэтому разрыв двойственности для этой задачи равен $f(x^*) w(\lambda^*) = 3 2 = 1 > 0.$

$$1 + \lambda = 6 - 4\lambda \quad \Rightarrow \quad \lambda^* = 1.$$

- Теперь вычислим $w(\lambda^*) = w_3(\lambda^*) = 1 + \lambda^* = 2$.
- В нашей задаче два оптимальных решения: $x^* = (1, 1, 0)$ и $x^0 = (0, 0, 1)$ с $f(x^*) = f(x^0) = 3$.
- Поэтому разрыв двойственности для этой задачи равен $f(x^*) w(\lambda^*) = 3 2 = 1 > 0.$

План лекции

- Двойственность Лагранжа
 - Двойственная функция Лагранжа
 - Слабая и сильная двойственность
 - Разрыв двойственности
- Экономическая интерпретация ланранжевой двойственности
 - Два сценария

Основной сценарий

- Пусть вектор х описывает операционный план фирмы,
- а f(x) = -c(x), где c(x) есть чистая прибыль фирмы, использующей план x.
- Неравенства $g_i(x) = r_i(x) b_i \le 0$, $i \in I = \{1, ..., m\}$ представляют ограничения на ресурсы (труд, электроэнергию, складские помещения и т. д.), или выражают лимиты, установленные регулирующими органами (например, на выброс парниковых газов).
- Чтобы найти план x^* , приносящий наибольшую прибыль, нужно решить оптимизационную задачу

$$\min\{f(x): g_i(x) \le 0, \quad i \in I; x \in S\},\$$

Основной сценарий

- \bullet Пусть вектор x описывает операционный план фирмы,
- а f(x) = -c(x), где c(x) есть чистая прибыль фирмы, использующей план x.
- Неравенства $g_i(x) = r_i(x) b_i \le 0$, $i \in I = \{1, ..., m\}$ представляют ограничения на ресурсы (труд, электроэнергию, складские помещения и т. д.), или выражают лимиты, установленные регулирующими органами (например, на выброс парниковых газов).
- Чтобы найти план x^* , приносящий наибольшую прибыль, нужно решить оптимизационную задачу

$$\min\{f(x): g_i(x) \le 0, \quad i \in I; x \in S\},\$$

Основной сценарий

- \bullet Пусть вектор x описывает операционный план фирмы,
- а f(x) = -c(x), где c(x) есть чистая прибыль фирмы, использующей план x.
- Неравенства $g_i(x) = r_i(x) b_i \le 0$, $i \in I = \{1, ..., m\}$ представляют ограничения на ресурсы (труд, электроэнергию, складские помещения и т. д.), или выражают лимиты, установленные регулирующими органами (например, на выброс парниковых газов).
- Чтобы найти план x^* , приносящий наибольшую прибыль, нужно решить оптимизационную задачу

$$\min\{f(x): g_i(x) \le 0, \quad i \in I; x \in S\},\$$

- \bullet Пусть вектор x описывает операционный план фирмы,
- а f(x) = -c(x), где c(x) есть чистая прибыль фирмы, использующей план x.
- Неравенства $g_i(x) = r_i(x) b_i \le 0$, $i \in I = \{1, \ldots, m\}$ представляют ограничения на ресурсы (труд, электроэнергию, складские помещения и т. д.), или выражают лимиты, установленные регулирующими органами (например, на выброс парниковых газов).
- Чтобы найти план x^* , приносящий наибольшую прибыль, нужно решить оптимизационную задачу

$$\min\{f(x): g_i(x) \le 0, \quad i \in I; x \in S\},\$$

- Теперь ресурсные ограничения могут нарушаться за определенную плату. Пусть $\lambda_i \geq 0$ есть *цена* ресурса i:
 - если имеется перерасход ресурса $i, g_i(x) > 0$, то фирма платит за ресурс сумму $\lambda_i g_i(x)$;
 - если ресурс i не используется полностью, $g_i(x) < 0$, то фирма получает сумму $-\lambda_i g_i(x)$.
- Скажем, если неравенство $g_i(x) \leq 0$ задает ограничение на складские помещения, то λ_i это стоимость одного квадратного метра складских помещений; фирма может как арендовать дополнительные площади, так и сама сдавать в аренду неиспользуемые складские помещения.
- В этом новом сценарии суммарные издержки фирмы, использующей план x, равны $L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$.

- Теперь ресурсные ограничения могут нарушаться за определенную плату. Пусть $\lambda_i \geq 0$ есть *цена* ресурса i:
 - если имеется перерасход ресурса i, $g_i(x) > 0$, то фирма платит за ресурс сумму $\lambda_i g_i(x)$;
 - если ресурс i не используется полностью, $g_i(x) < 0$, то фирма получает сумму $-\lambda_i g_i(x)$.
- Скажем, если неравенство $g_i(x) \leq 0$ задает ограничение на складские помещения, то λ_i это стоимость одного квадратного метра складских помещений; фирма может как арендовать дополнительные площади, так и сама сдавать в аренду неиспользуемые складские помещения.
- В этом новом сценарии суммарные издержки фирмы, использующей план x, равны $L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$.

- Теперь ресурсные ограничения могут нарушаться за определенную плату. Пусть $\lambda_i \geq 0$ есть *цена* ресурса i:
 - если имеется перерасход ресурса i, $g_i(x) > 0$, то фирма платит за ресурс сумму $\lambda_i g_i(x)$;
 - если ресурс i не используется полностью, $g_i(x) < 0$, то фирма получает сумму $-\lambda_i g_i(x)$.
- Скажем, если неравенство $g_i(x) \leq 0$ задает ограничение на складские помещения, то λ_i это стоимость одного квадратного метра складских помещений; фирма может как арендовать дополнительные площади, так и сама сдавать в аренду неиспользуемые складские помещения.
- В этом новом сценарии суммарные издержки фирмы, использующей план x, равны $L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$.

- Теперь ресурсные ограничения могут нарушаться за определенную плату. Пусть $\lambda_i \geq 0$ есть *цена* ресурса i:
 - если имеется перерасход ресурса i, $g_i(x) > 0$, то фирма платит за ресурс сумму $\lambda_i g_i(x)$;
 - если ресурс i не используется полностью, $g_i(x) < 0$, то фирма получает сумму $-\lambda_i g_i(x)$.
- Скажем, если неравенство $g_i(x) \leq 0$ задает ограничение на складские помещения, то λ_i это стоимость одного квадратного метра складских помещений; фирма может как арендовать дополнительные площади, так и сама сдавать в аренду неиспользуемые складские помещения.
- В этом новом сценарии суммарные издержки фирмы, использующей план x, равны $L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$.

- Теперь ресурсные ограничения могут нарушаться за определенную плату. Пусть $\lambda_i \geq 0$ есть *цена* ресурса i:
 - если имеется перерасход ресурса i, $g_i(x) > 0$, то фирма платит за ресурс сумму $\lambda_i g_i(x)$;
 - если ресурс i не используется полностью, $g_i(x) < 0$, то фирма получает сумму $-\lambda_i g_i(x)$.
- Скажем, если неравенство $g_i(x) \leq 0$ задает ограничение на складские помещения, то λ_i это стоимость одного квадратного метра складских помещений; фирма может как арендовать дополнительные площади, так и сама сдавать в аренду неиспользуемые складские помещения.
- В этом новом сценарии суммарные издержки фирмы, использующей план x, равны $L(x, \lambda) = f(x) + \sum_{i=1}^m \lambda_i g_i(x)$.

- Скажем, если неравенство $g_i(x) \leq 0$ задает ограничение на складские помещения, то λ_i это стоимость одного квадратного метра складских помещений; фирма может как арендовать дополнительные площади, так и сама сдавать в аренду неиспользуемые складские помещения.
- В этом новом сценарии суммарные издержки фирмы, использующей план x, равны $L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$.
- Стремясь минимизировать издержки, фирма находит свой оптимальный план $x(\lambda)$, решая задачу

$$w(\lambda) = \min\{L(x,\lambda) : x \in S\}.$$

• Это значит, что значение $-w(\lambda)$ есть оптимальная прибыль фирмы при ценах на ресурсы, заданных вектором λ .

- Скажем, если неравенство $g_i(x) \leq 0$ задает ограничение на складские помещения, то λ_i это стоимость одного квадратного метра складских помещений; фирма может как арендовать дополнительные площади, так и сама сдавать в аренду неиспользуемые складские помещения.
- В этом новом сценарии суммарные издержки фирмы, использующей план x, равны $L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$.
- Стремясь минимизировать издержки, фирма находит свой оптимальный план $x(\lambda)$, решая задачу

$$w(\lambda) = \min\{L(x,\lambda) : x \in S\}.$$

• Это значит, что значение $-w(\lambda)$ есть оптимальная прибыль фирмы при ценах на ресурсы, заданных вектором λ .

План лекции

- Двойственность Лагранжа
 - Двойственная функция Лагранжа
 - Слабая и сильная двойственность
 - Разрыв двойственности
- Экономическая интерпретация ланранжевой двойственности
 - Два сценария
 - Интерпретация слабой и сильной теорем двойственности

Используя представленную выше интерпретацию, мы можем перефразировать слабую теорему двойственности следующим образом:

Утверждение

- при любых ценах на ресурсы оптимальная прибыль фирмы в ситуации, когда разрешено продавать и покупать ресурсы, не меньше оптимальной прибыли фирмы в ситуации, когда покупать и продавать ресурсы нельзя:
- величину разрыва двойственности можно
 интерпретировать как наименьшую возможную
 выгоду (при самых неблагоприятных ценах на ресурсы),
 которую может получить фирма, от возможности
 покитать и продавать ресурсы.

Используя представленную выше интерпретацию, мы можем перефразировать слабую теорему двойственности следующим образом:

Утверждение

- при любых ценах на ресурсы оптимальная прибыль фирмы в ситуации, когда разрешено продавать и покупать ресурсы, не меньше оптимальной прибыли фирмы в ситуации, когда покупать и продавать ресурсы нельзя;
- е величину разрыва двойственности можно интерпретировать как наименьшую возможную выгоду (при самых неблагоприятных ценах на ресурсы), которую может получить фирма, от возможности покупать и продавать ресурсы.

Используя представленную выше интерпретацию, мы можем перефразировать слабую теорему двойственности следующим образом:

Утверждение

- при любых ценах на ресурсы оптимальная прибыль фирмы в ситуации, когда разрешено продавать и покупать ресурсы, не меньше оптимальной прибыли фирмы в ситуации, когда покупать и продавать ресурсы нельзя;
- величину разрыва двойственности можно интерпретировать как наименьшую возможную выгоду (при самых неблагоприятных ценах на ресурсы), которую может получить фирма, от возможности покупать и продавать ресурсы.

- Пусть справедлива сильная теорема двойственности и $f(x^*) = w(\lambda^*)$, где λ^* есть оптимальное решение двойственной задачи $\max\{w(\lambda): \lambda \in \mathbb{R}^m\}$.
- В таком случае λ^* можно интерпретировать как вектор цен ресурсов, при которых фирма не получает выгоды от покупки и продажи ресурсов.
- Поэтому компоненты вектора λ^* называют *теневыми ценами* ресурсов.
- При выполнении сильной теоремы двойственности должно выполняться условие дополняющей нежесткости

$$\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m,$$

• из которого следует, что

Утверждение

- Пусть справедлива сильная теорема двойственности и $f(x^*) = w(\lambda^*)$, где λ^* есть оптимальное решение двойственной задачи $\max\{w(\lambda): \lambda \in \mathbb{R}^m\}$.
- В таком случае λ^* можно интерпретировать как вектор цен ресурсов, при которых фирма не получает выгоды от покупки и продажи ресурсов.
- Поэтому компоненты вектора λ^* называют *теневыми ценами* ресурсов.
- При выполнении сильной теоремы двойственности должно выполняться условие дополняющей нежесткости

$$\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m,$$

• из которого следует, что

Утверждение

- Пусть справедлива сильная теорема двойственности и $f(x^*) = w(\lambda^*)$, где λ^* есть оптимальное решение двойственной задачи $\max\{w(\lambda): \lambda \in \mathbb{R}^m\}$.
- В таком случае λ^* можно интерпретировать как вектор цен ресурсов, при которых фирма не получает выгоды от покупки и продажи ресурсов.
- Поэтому компоненты вектора λ^* называют *теневыми ценами* ресурсов.
- При выполнении сильной теоремы двойственности должно выполняться условие дополняющей нежесткости

$$\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m,$$

• из которого следует, что

Утверждение

- Пусть справедлива сильная теорема двойственности и $f(x^*) = w(\lambda^*)$, где λ^* есть оптимальное решение двойственной задачи $\max\{w(\lambda): \lambda \in \mathbb{R}^m\}$.
- В таком случае λ^* можно интерпретировать как вектор цен ресурсов, при которых фирма не получает выгоды от покупки и продажи ресурсов.
- Поэтому компоненты вектора λ^* называют *теневыми ценами* ресурсов.
- При выполнении сильной теоремы двойственности должно выполняться условие дополняющей нежесткости

$$\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m,$$

• из которого следует, что

Утверждение

- Пусть справедлива сильная теорема двойственности и $f(x^*) = w(\lambda^*)$, где λ^* есть оптимальное решение двойственной задачи $\max\{w(\lambda): \lambda \in \mathbb{R}^m\}$.
- В таком случае λ^* можно интерпретировать как вектор цен ресурсов, при которых фирма не получает выгоды от покупки и продажи ресурсов.
- Поэтому компоненты вектора λ^* называют *теневыми ценами* ресурсов.
- При выполнении сильной теоремы двойственности должно выполняться условие дополняющей нежесткости

$$\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m,$$

• из которого следует, что

Утверждение

- Если $w(\lambda^*) = f(x^*)$, то
- $f(x^*) = w(\lambda^*) = \min_{x \in S} L(x, \lambda^*)$ $\leq L(x^*, \lambda^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*)$
- Откуда $\sum_{i=1}^m \lambda_i^* g_i(x^*) \geq 0$.
- Но поскольку все слагаемые в левой части этого неравенства неположительны $(\lambda_i^* \ge 0, g_i(x^*) \le 0)$
- то справедливы равенства: $\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m.$
- Теперь из теоремы о св-вах седя. точек следует, что пара (x^*, λ^*) образует седловую точку функции Ланранжа.

- Если $w(\lambda^*) = f(x^*)$, то
- $f(x^*) = w(\lambda^*) = \min_{x \in S} L(x, \lambda^*)$ $\leq L(x^*, \lambda^*) = f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*)$
- Откуда $\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}(x^{*}) \geq 0.$
- Но поскольку все слагаемые в левой части этого неравенства неположительны $(\lambda_i^* \ge 0, g_i(x^*) \le 0)$
- то справедливы равенства: $\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m.$
- Теперь из теоремы о св-вах седл. точек следует, что пара (x^*, λ^*) образует седловую точку функции Ланранжа

- Если $w(\lambda^*) = f(x^*)$, то
- $f(x^*) = w(\lambda^*) = \min_{x \in S} L(x, \lambda^*)$

$$\leq L(x^*, \lambda^*) = f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*)$$

- Откуда $\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}(x^{*}) \geq 0.$
- Но поскольку все слагаемые в левой части этого неравенства неположительны $(\lambda_i^* \ge 0, g_i(x^*) \le 0)$
- то справедливы равенства: $\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m.$
- Теперь из теоремы о св-нах соди. точек следует, что пара (x^*, λ^*) образует седловую точку функции Ланранжа

- Если $w(\lambda^*) = f(x^*)$, то
- $f(x^*) = w(\lambda^*) = \min_{x \in S} L(x, \lambda^*)$ $\leq L(x^*, \lambda^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*).$

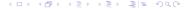
• Откуда
$$\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}(x^{*}) > 0.$$

- Но поскольку все слагаемые в левой части этого неравенства неположительны ($\lambda^* > 0$, $g_i(x^*) < 0$)
- то справедливы равенства: $\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m.$
- Теперь из теоремы о св-вах седл. точек следует, что пара (x^*, λ^*) образует седловую точку функции Ланранжа

- Если $w(\lambda^*) = f(x^*)$, то
- $f(x^*) = w(\lambda^*) = \min_{x \in S} L(x, \lambda^*)$ $\leq L(x^*, \lambda^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*).$
- Откуда $\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}(x^{*}) \geq 0.$
- Но поскольку все слагаемые в левой части этого неравенства неположительны $(\lambda_i^* \ge 0, g_i(x^*) \le 0)$
- то справедливы равенства: $\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m.$
- Теперь из теоремы о св-вых селл. точек следует, что пара (x^*, λ^*) образует седловую точку функции Ланранжа

- Если $w(\lambda^*) = f(x^*)$, то
- $f(x^*) = w(\lambda^*) = \min_{x \in S} L(x, \lambda^*)$ $\leq L(x^*, \lambda^*) = f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*).$
- Откуда $\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}(x^{*}) \geq 0.$
- Но поскольку все слагаемые в левой части этого неравенства неположительны $(\lambda_i^* \ge 0, g_i(x^*) \le 0)$
- то справедливы равенства: $\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m.$
- Теперь из теоремы о св-вах содл. точек следует, что пара (x^*, λ^*) образует седловую точку функции Ланранжа

- Если $w(\lambda^*) = f(x^*)$, то
- $f(x^*) = w(\lambda^*) = \min_{x \in S} L(x, \lambda^*)$ $\leq L(x^*, \lambda^*) = f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*).$
- Откуда $\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}(x^{*}) \geq 0.$
- Но поскольку все слагаемые в левой части этого неравенства неположительны $(\lambda_i^* \ge 0, g_i(x^*) \le 0),$
- то справедливы равенства: $\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m.$
- Теперь из теоремы о св-вах содл. точек следует, что пара (x^*, λ^*) образует седловую точку функции Ланранжа



Док-во сильной теоремы двойств.: необходимость

- Если $w(\lambda^*) = f(x^*)$, то
- $f(x^*) = w(\lambda^*) = \min_{x \in S} L(x, \lambda^*)$ $\leq L(x^*, \lambda^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*).$
- Откуда $\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}(x^{*}) \geq 0.$
- Но поскольку все слагаемые в левой части этого неравенства неположительны $(\lambda_i^* \ge 0, g_i(x^*) \le 0),$
- ullet то справедливы равенства: $\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m.$
- Теперь из теоремы о св-вых селл. точек следует, что пара (x^*, λ^*) образует седловую точку функции Ланранжа

Док-во сильной теоремы двойств.: необходимость

- Если $w(\lambda^*) = f(x^*)$, то
- $f(x^*) = w(\lambda^*) = \min_{x \in S} L(x, \lambda^*)$ $\leq L(x^*, \lambda^*) = f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*).$
- Откуда $\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}(x^{*}) \geq 0.$
- Но поскольку все слагаемые в левой части этого неравенства неположительны $(\lambda_i^* \ge 0, g_i(x^*) \le 0),$
- то справедливы равенства: $\lambda_i^* g_i(x^*) = 0, \quad i = 1, \dots, m.$
- Теперь из теоремы о св-вах седл. точек следует, что пара (x^*, λ^*) образует седловую точку функции Ланранжа.

- ullet Если (x^*, λ^*) седловая точка функции Лагранжа,
- а в силу теоремы о св-вах седл. точек справедливы равенства:

$$f(x^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*)$$

= $L(x^*, \lambda^*) = \min_{x \in \mathcal{X}} L(x, \lambda^*) = w$

- Поскольку $w(\lambda^*) = f(x^*) \ge w(\lambda)$ для всех $\lambda \in \mathbb{R}_+^m$,
- \bullet то λ^* оптимальное решение двойственной задачи (2).

- ullet Если (x^*, λ^*) седловая точка функции Лагранжа,
- то по $^{ }$ теореме $^{ }$ Точка x^* является оптимальным решением прямой задачи (1),
- а в силу теоремы о съвых сель точе» справедливы равенства: $f(x^*) = f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*)$

$$= L(x^*, \lambda^*) = \min_{x \in S} L(x, \lambda^*) = w(\lambda^*).$$

- Поскольку $w(\lambda^*) = f(x^*) \ge w(\lambda)$ для всех $\lambda \in \mathbb{R}_+^m$,
- \bullet то λ^* оптимальное решение двойственной задачи (2).

- \bullet Если (x^*, λ^*) седловая точка функции Лагранжа,
- то по теореме Лагранжа точка x^* является оптимальным решением прямой задачи (1),
- а в силу теоремы о св-вах седл. точек справедливы равенства:

$$f(x^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*)$$
$$= L(x^*, \lambda^*) = \min_{x \in S} L(x, \lambda^*) = w(\lambda^*).$$

- Поскольку $w(\lambda^*) = f(x^*) \ge w(\lambda)$ для всех $\lambda \in \mathbb{R}_+^m$,
- \bullet то λ^* оптимальное решение двойственной задачи (2).

- ullet Если (x^*, λ^*) седловая точка функции Лагранжа,
- то по теореме Лагранжа точка x^* является оптимальным решением прямой задачи (1),
- а в силу теоремы о св-вах седл. точек справедливы равенства:

$$f(x^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*)$$

= $L(x^*, \lambda^*) = \min_{x \in S} L(x, \lambda^*) = w(\lambda^*).$

- Поскольку $w(\lambda^*) = f(x^*) \ge w(\lambda)$ для всех $\lambda \in \mathbb{R}_+^m$,
- \bullet то λ^* оптимальное решение двойственной задачи (2).

- \bullet Если (x^*, λ^*) седловая точка функции Лагранжа,
- то по теореме Лагранжа точка x^* является оптимальным решением прямой задачи (1),
- а в силу теоремы о св-вах седл. точек справедливы равенства:

$$f(x^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*)$$

= $L(x^*, \lambda^*) = \min_{x \in S} L(x, \lambda^*) = w(\lambda^*).$

- Поскольку $w(\lambda^*) = f(x^*) \ge w(\lambda)$ для всех $\lambda \in \mathbb{R}_+^m$,
- \bullet то λ^* оптимальное решение двойственной задачи (2).

- ullet Если (x^*, λ^*) седловая точка функции Лагранжа,
- то по теореме Лагранжа точка x^* является оптимальным решением прямой задачи (1),
- а в силу теоремы о св-вах седл. точек справедливы равенства:

$$f(x^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*)$$

= $L(x^*, \lambda^*) = \min_{x \in S} L(x, \lambda^*) = w(\lambda^*).$

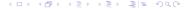
- Поскольку $w(\lambda^*) = f(x^*) \ge w(\lambda)$ для всех $\lambda \in \mathbb{R}_+^m$,
- \bullet то λ^* оптимальное решение двойственной задачи (2).

- ullet Если (x^*, λ^*) седловая точка функции Лагранжа,
- то по теореме Лагранжа точка x^* является оптимальным решением прямой задачи (1),
- а в силу теоремы о св-вах седл. точек справедливы равенства:

$$f(x^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*)$$

= $L(x^*, \lambda^*) = \min_{x \in S} L(x, \lambda^*) = w(\lambda^*).$

- Поскольку $w(\lambda^*) = f(x^*) \ge w(\lambda)$ для всех $\lambda \in \mathbb{R}_+^m$,
- \bullet то λ^* оптимальное решение двойственной задачи (2).



- \bullet Если (x^*, λ^*) седловая точка функции Лагранжа,
- то по теореме Лагранжа точка x^* является оптимальным решением прямой задачи (1),
- а в силу теоремы о св-вах седл. точек справедливы равенства:

$$f(x^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*)$$

= $L(x^*, \lambda^*) = \min_{x \in S} L(x, \lambda^*) = w(\lambda^*).$

- Поскольку $w(\lambda^*) = f(x^*) \ge w(\lambda)$ для всех $\lambda \in \mathbb{R}_+^m$,
- ullet то λ^* оптимальное решение двойственной задачи (2).

Свойства седловых точек

Теорема

Точка $(\bar{x}, \bar{\lambda}) \in S \times \mathbb{R}^m_+$ является седловой для функции $L(x, \lambda)$ тогда и только тогда, когда

$$L(\bar{x}, \bar{\lambda}) = \min_{x \in S} L(x, \bar{\lambda}),$$

$$g_i(\bar{x}) \le 0, \quad i \in I,$$

$$\bar{\lambda}_i g_i(\bar{x}) = 0, \quad i \in I.$$

4 К лок ву нообходнуюсти

√ К док-ву достаточности

Достаточное условие оптимальности

Теорема

Если пара $(\bar{x}, \bar{\lambda}) \in S \times \mathbb{R}^m_+$ есть седловая точка функции $L(x, \lambda)$, то \bar{x} является глобальным минимумом в задаче (1).

◀ Вернуться к доказательству

Достаточное условие оптимальности

Теорема

Если пара $(\bar{x}, \bar{\lambda}) \in S \times \mathbb{R}^m_+$ есть седловая точка функции $L(x, \lambda)$, то \bar{x} является глобальным минимумом в задаче (1).

◆ Вернуться к показательству

