H.H. Писарук pisaruk@yandex.by

Экономический факультет Белорусский государственный университет

Минск - 2014

План лекции

- П Симплекс-метод
 - Базисы и базисные решения
 - Итерации симплекс-метода

- 2 Числовой пример
 - Симплекс-метод в форме уравнений
 - Симплекс-метод в табличной форме

План лекции

- 1 Симплекс-метод
 - Базисы и базисные решения
 - Итерации симплекс-метода

- 2 Числовой пример
 - Симплекс-метод в форме уравнений
 - Симплекс-метод в табличной форме

Будем рассматривать задачу ЛП в стандартной форме:

$$\max\{c^T x : Ax = b, \ x \ge 0\},\tag{1}$$

- A действительная матрица размера $m \times n$, rank A = m.
- $c \in \mathbb{R}^n$,
- $b \in \mathbb{R}^m$,
- а $x = (x_1, \ldots, x_n)^T$ есть вектор неизвестных.

Будем рассматривать задачу ЛП в стандартной форме:

$$\max\{c^T x : Ax = b, \ x \ge 0\},\tag{1}$$

- A действительная матрица размера $m \times n$, rank A = m.
- $c \in \mathbb{R}^n$.
- $b \in \mathbb{R}^m$.
- а $x = (x_1, \ldots, x_n)^T$ есть вектор неизвестных.

Будем рассматривать задачу ЛП в стандартной форме:

$$\max\{c^T x : Ax = b, \ x \ge 0\},\tag{1}$$

- \bullet A действительная матрица размера $m \times n$, $\operatorname{rank} A = m$.
- $c \in \mathbb{R}^n$.
- $b \in \mathbb{R}^m$.
- а $x = (x_1, \ldots, x_n)^T$ есть вектор неизвестных.

Будем рассматривать задачу ЛП в стандартной форме:

$$\max\{c^T x : Ax = b, \ x \ge 0\},\tag{1}$$

- A действительная матрица размера $m \times n$, rank A = m.
- \bullet $c \in \mathbb{R}^n$.
- $b \in \mathbb{R}^m$.
- a $x = (x_1, \dots, x_n)^T$ есть вектор неизвестных.

Будем рассматривать задачу ЛП в стандартной форме:

$$\max\{c^T x : Ax = b, \ x \ge 0\},\tag{1}$$

- \bullet A действительная матрица размера $m \times n$, $\operatorname{rank} A = m$.
- $c \in \mathbb{R}^n$,
- $b \in \mathbb{R}^m$.
- а $x = (x_1, \dots, x_n)^T$ есть вектор неизвестных.

Будем рассматривать задачу ЛП в стандартной форме:

$$\max\{c^T x : Ax = b, \ x \ge 0\},\tag{1}$$

- A действительная матрица размера $m \times n$, rank A = m.
- \circ $c \in \mathbb{R}^n$,
- $b \in \mathbb{R}^m$,
- a $x = (x_1, \dots, x_n)^T$ есть вектор неизвестных.

- Любое подмножество $J \subseteq N \stackrel{\text{def}}{=} \{1, \dots, n\}$ из $m \ (|J| = m)$ линейно независимых столбцов $(\operatorname{rank} A^J = m)$ называется базисным.
- При этом, матрица $B = A^J$ называется базисной,
- а решение $x = (x_J = B^{-1}b, x_{N\setminus J} = 0)$, системы уравнений Ax = b называется базисным решением задачи ЛП.
- Базисное множество J и соответствующее ему базисное решение $x = (x_J = B^{-1}b, x_{N \setminus J} = 0)$ называются $\partial ocmuмыми$, если $B^{-1}b > 0$.
- Заметим, что допустимые базисные решения являются допустимыми решениями задачи ЛП (1).

- Любое подмножество $J \subseteq N \stackrel{\text{def}}{=} \{1, \dots, n\}$ из $m \ (|J| = m)$ линейно независимых столбцов $(\operatorname{rank} A^J = m)$ называется базисным.
- ullet При этом, матрица $B=A^I$ называется базисной,
- а решение $x = (x_J = B^{-1}b, x_{N\setminus J} = 0)$, системы уравнений Ax = b называется базисным решением задачи ЛП.
- Базисное множество J и соответствующее ему базисное решение $x = (x_J = B^{-1}b, x_{N \setminus J} = 0)$ называются $\partial ocmuмыми$, если $B^{-1}b \geq 0$.
- Заметим, что допустимые базисные решения являются допустимыми решениями задачи ЛП (1).

- Любое подмножество $J \subseteq N \stackrel{\text{def}}{=} \{1, \dots, n\}$ из $m \ (|J| = m)$ линейно независимых столбцов $(\operatorname{rank} A^J = m)$ называется базисным.
- При этом, матрица $B = A^{J}$ называется базисной,
- а решение $x = (x_J = B^{-1}b, x_{N \setminus J} = 0)$, системы уравнений Ax = b называется базисным решением задачи ЛП.
- Базисное множество J и соответствующее ему базисное решение $x = (x_J = B^{-1}b, x_{N \setminus J} = 0)$ называются $\partial cmuмымu$, если $B^{-1}b > 0$.
- Заметим, что допустимые базисные решения являются допустимыми решениями задачи ЛП (1).

- Любое подмножество $J \subseteq N \stackrel{\text{def}}{=} \{1, \dots, n\}$ из $m \ (|J| = m)$ линейно независимых столбцов $(\operatorname{rank} A^J = m)$ называется базисным.
- При этом, матрица $B = A^{J}$ называется базисной,
- а решение $x = (x_J = B^{-1}b, x_{N\setminus J} = 0)$, системы уравнений Ax = b называется базисным решением задачи ЛП.
- Базисное множество J и соответствующее ему базисное решение $x=(x_J=B^{-1}b,x_{N\setminus J}=0)$ называются ${\it достимыми},$ если $B^{-1}b\geq 0.$
- Заметим, что допустимые базисные решения являются допустимыми решениями задачи ЛП (1).

- Любое подмножество $J \subseteq N \stackrel{\text{def}}{=} \{1, \dots, n\}$ из $m \ (|J| = m)$ линейно независимых столбцов $(\operatorname{rank} A^J = m)$ называется базисным.
- При этом, матрица $B = A^{J}$ называется базисной,
- а решение $x = (x_J = B^{-1}b, x_{N\setminus J} = 0)$, системы уравнений Ax = b называется базисным решением задачи ЛП.
- Базисное множество J и соответствующее ему базисное решение $x=(x_J=B^{-1}b,x_{N\setminus J}=0)$ называются $\partial ocmuмыми$, если $B^{-1}b\geq 0$.
- Заметим, что допустимые базисные решения являются допустимыми решениями задачи ЛП (1).

- Базисное множество J называется $\partial soй cmseнно$ допустимым,
- ullet если для $B=A^J$ вектор $y=(B^T)^{-1}c_J$ является решением
- В этом случае прямое базисное решение
- По теореме двойственности, если допустимое базисное

- Базисное множество J называется $\partial 60 \ddot{u} cm 6 e n + 0$ допустимым,
- ullet если для $B=A^J$ вектор $y=(B^T)^{-1}c_J$ является решением задачи $\Pi\Pi$, двойственной к задаче (1).
- В этом случае прямое базисное решение
- По теореме двойственности, если допустимое базисное

- Базисное множество J называется двойственно допустимым,
- если для $B = A^J$ вектор $y = (B^T)^{-1}c_J$ является решением задачи ЛП, двойственной к задаче (1).
- В этом случае прямое базисное решение $x = (x_J = B^{-1}b, x_{N \setminus J} = 0)$ называются двойственно достимым.
- По теореме двойственности, если допустимое базисное решение задачи ЛП (1) является также и двойственно допустимым, то это решение является оптимальным.

- Базисное множество J называется двойственно допустимым,
- если для $B = A^J$ вектор $y = (B^T)^{-1}c_J$ является решением задачи ЛП, двойственной к задаче (1).
- В этом случае прямое базисное решение $x = (x_J = B^{-1}b, x_{N \setminus J} = 0)$ называются двойственно достимым.
- По теореме двойственности, если допустимое базисное решение задачи ЛП (1) является также и двойственно допустимым, то это решение является оптимальным.

План лекции

- Оимплекс-метод
 - Базисы и базисные решения
 - Итерации симплекс-метода

- 2 Числовой пример
 - Симплекс-метод в форме уравнений
 - Симплекс-метод в табличной форме

- Симплекс-метод начинает работу с допустимого базисного решения.
- На каждой итерации в текущее базисное множество $J = \{j_1, \ldots, j_m\}$ вводится небазисный столбец $j \in N \setminus J$ с положительной приведенной стоимостью $\bar{c}_j = c_j \sum_{i=1}^m a_{ij} y_j$, где $y = (B^T)^{-1} c_J$ и $B = A^J$.
- Затем из базисного множества выводится столбец $j_k \in \arg\min\{x_{j_k}/(B^{-1}A^j)_k: (B^{-1}A^j)_k>0, \ k=1,\ldots,m\},$
- что является гарантией того, что новые базисное множество и базисное решение будут допустимыми.
- Симплекс-метод заканчивает работу, когда встретится одна из следущих двух ситуаций:
 - 📵 все приведенные стоимости неположительны;
 - \bigcirc все компоненты вектора $h^j=B^{-1}A^j$ неположительны

- Симплекс-метод начинает работу с допустимого базисного решения.
- На каждой итерации в текущее базисное множество $J = \{j_1, \ldots, j_m\}$ вводится небазисный столбец $j \in N \setminus J$ с положительной приведенной стоимостью $\bar{c}_j = c_j \sum_{i=1}^m a_{ij} y_j$, где $y = (B^T)^{-1} c_J$ и $B = A^J$.
- Затем из базисного множества выводится столбец $j_k \in \arg\min\{x_{j_k}/(B^{-1}A^j)_k: (B^{-1}A^j)_k > 0, \ k=1,\ldots,m\},$
- что является гарантией того, что новые базисное множество и базисное решение будут допустимыми.
- Симплекс-метод заканчивает работу, когда встретится одна из следущих двух ситуаций:
 - 🔘 все приведенные стоимости неположительны
 - $\bigcirc \!\!\! \bigcirc \!\!\!$ все компоненты вектора $h^j = B^{-1}A^j$ неположительны.

- Симплекс-метод начинает работу с допустимого базисного решения.
- На каждой итерации в текущее базисное множество $J = \{j_1, \ldots, j_m\}$ вводится небазисный столбец $j \in N \setminus J$ с положительной приведенной стоимостью $\bar{c}_j = c_j \sum_{i=1}^m a_{ij} y_j$, где $y = (B^T)^{-1} c_J$ и $B = A^J$.
- Затем из базисного множества выводится столбец $j_k \in \arg\min\{x_{j_k}/(B^{-1}A^j)_k: (B^{-1}A^j)_k > 0, \ k=1,\ldots,m\},$
- что является гарантией того, что новые базисное множество и базисное решение будут допустимыми.
- Симплекс-метод заканчивает работу, когда встретится одна из следущих двух ситуаций:
 - 🔘 все приведенные стоимости неположительны;
 - ullet все компоненты вектора $h^{j} = B^{-1}A^{j}$ неположительны.

- Симплекс-метод начинает работу с допустимого базисного решения.
- На каждой итерации в текущее базисное множество $J = \{j_1, \ldots, j_m\}$ вводится небазисный столбец $j \in N \setminus J$ с положительной приведенной стоимостью $\bar{c}_j = c_j \sum_{i=1}^m a_{ij} y_j$, где $y = (B^T)^{-1} c_J$ и $B = A^J$.
- Затем из базисного множества выводится столбец $j_k \in \arg\min\{x_{j_k}/(B^{-1}A^j)_k: (B^{-1}A^j)_k > 0, \ k=1,\ldots,m\},$
- что является гарантией того, что новые базисное множество и базисное решение будут допустимыми.
- Симплекс-метод заканчивает работу, когда встретится одна из следущих двух ситуаций:
 - 📵 все приведенные стоимости неположительны;
 - все компоненты вектора $h^j = B^{-1}A^j$ неположительны

- Симплекс-метод начинает работу с допустимого базисного решения.
- На каждой итерации в текущее базисное множество $J = \{j_1, \ldots, j_m\}$ вводится небазисный столбец $j \in N \setminus J$ с положительной приведенной стоимостью $\bar{c}_j = c_j \sum_{i=1}^m a_{ij} y_j$, где $y = (B^T)^{-1} c_J$ и $B = A^J$.
- Затем из базисного множества выводится столбец $j_k \in \arg\min\{x_{j_k}/(B^{-1}A^j)_k: (B^{-1}A^j)_k>0, \ k=1,\ldots,m\},$
- что является гарантией того, что новые базисное множество и базисное решение будут допустимыми.
- Симплекс-метод заканчивает работу, когда встретится одна из следущих двух ситуаций:
 - 1 все приведенные стоимости неположительны;
 - **2** все компоненты вектора $h^{j} = B^{-1}A^{j}$ неположительны

- Симплекс-метод начинает работу с допустимого базисного решения.
- На каждой итерации в текущее базисное множество $J = \{j_1, \ldots, j_m\}$ вводится небазисный столбец $j \in N \setminus J$ с положительной приведенной стоимостью $\bar{c}_j = c_j \sum_{i=1}^m a_{ij} y_j$, где $y = (B^T)^{-1} c_J$ и $B = A^J$.
- Затем из базисного множества выводится столбец $j_k \in \arg\min\{x_{j_k}/(B^{-1}A^j)_k: (B^{-1}A^j)_k > 0, \ k=1,\ldots,m\},$
- что является гарантией того, что новые базисное множество и базисное решение будут допустимыми.
- Симплекс-метод заканчивает работу, когда встретится одна из следущих двух ситуаций:
 - все приведенные стоимости неположительны;
 - ② все компоненты вектора $h^{j} = B^{-1}A^{j}$ неположительны

- Симплекс-метод начинает работу с допустимого базисного решения.
- На каждой итерации в текущее базисное множество $J = \{j_1, \ldots, j_m\}$ вводится небазисный столбец $j \in N \setminus J$ с положительной приведенной стоимостью $\bar{c}_j = c_j \sum_{i=1}^m a_{ij} y_j$, где $y = (B^T)^{-1} c_J$ и $B = A^J$.
- Затем из базисного множества выводится столбец $j_k \in \arg\min\{x_{j_k}/(B^{-1}A^j)_k: (B^{-1}A^j)_k > 0, \ k=1,\ldots,m\},$
- что является гарантией того, что новые базисное множество и базисное решение будут допустимыми.
- Симплекс-метод заканчивает работу, когда встретится одна из следущих двух ситуаций:
 - все приведенные стоимости неположительны;
 - **2** все компоненты вектора $h^{j} = B^{-1}A^{j}$ неположительны.

- Симплекс-метод заканчивает работу, когда встретится одна из следущих двух ситуаций:
 - все приведенные стоимости неположительны;
 - ${\it 2}{\it 3}$ все компоненты вектора $h^j = B^{-1}A^j$ неположительны.
- В случае 1 текущее базисное решение *x** является двойственно допустимым и поэтому оптимальным.
- В случае 2 вектор

$$x(t) \stackrel{\text{def}}{=} (x(t)_J = B^{-1}b - th^j, x(t)_j = t, x(t)_{N \setminus (J \cup \{j\})} = 0)$$

— допустимое решение задачи ЛП при любом t>0

- Так как $c^T x(t) = (c_J) T(B^{-1}(b tA^j) + tc_j = y^T b + t(c_j y^T A^j)$
- $\bar{c}_j = c_j y^T A^j > 0$, to $\lim_{t \to \infty} c^T x(t) = \infty$,
- т. е. в случае 2 целевая функция з-чи ЛП неограничена.

- Симплекс-метод заканчивает работу, когда встретится одна из следущих двух ситуаций:
 - все приведенные стоимости неположительны;
 - ${f 2}$ все компоненты вектора $h^j = B^{-1} A^j$ неположительны.
- В случае 1 текущее базисное решение x^* является двойственно допустимым и поэтому оптимальным.
- В случае 2 вектор

$$x(t) \stackrel{\text{def}}{=} (x(t)_J = B^{-1}b - th^j, x(t)_j = t, x(t)_{N \setminus (J \cup \{j\})} = 0)$$

— допустимое решение задачи ЛП при любом t > 0.

• Так как
$$c^T x(t) = (c_J) T(B^{-1}(b - tA^j) + tc_j = y^T b + t(c_j - y^T A^j)$$

•
$$\mathbf{w} \ \overline{c}_j = c_j - \mathbf{y}^T A^j > 0$$
, to $\lim_{t \to \infty} c^T x(t) = \infty$,

• т. е. в случае 2 целевая функция з-чи ЛП неограничена.

- Симплекс-метод заканчивает работу, когда встретится одна из следущих двух ситуаций:
 - 💶 все приведенные стоимости неположительны;
 - ${f 2}$ все компоненты вектора $h^j = B^{-1}A^j$ неположительны.
- В случае 1 текущее базисное решение x^* является двойственно допустимым и поэтому оптимальным.
- В случае 2 вектор

$$x(t) \stackrel{\text{def}}{=} (x(t)_J = B^{-1}b - th^j, x(t)_j = t, x(t)_{N \setminus (J \cup \{j\})} = 0)$$

- допустимое решение задачи ЛП при любом t > 0.
- Так как $c^T x(t) = (c_J) T(B^{-1}(b tA^j) + tc_j = y^T b + t(c_j y^T A^j)$
- $\pi \ \bar{c}_j = c_j y^T A^j > 0$, to $\lim_{t \to \infty} c^T x(t) = \infty$,
- т. е. в случае 2 целевая функция з-чи ЛП неограничена.

- Симплекс-метод заканчивает работу, когда встретится одна из следущих двух ситуаций:
 - все приведенные стоимости неположительны;
- В случае 1 текущее базисное решение х* является двойственно допустимым и поэтому оптимальным.
- В случае 2 вектор

$$x(t) \stackrel{\text{def}}{=} (x(t)_J = B^{-1}b - th^j, x(t)_j = t, x(t)_{N \setminus (J \cup \{j\})} = 0)$$

- допустимое решение задачи ЛП при любом t > 0.
- Tak kak $c^T x(t) = (c_I) T(B^{-1}(b tA^j) + tc_i = y^T b + t(c_i y^T A^j)$
- \bullet и $\bar{c}_i = c_i y^T A^j > 0$, то $\lim_{t \to \infty} c^T x(t) = \infty$,
- т. е. в случае 2 целевая функция з-чи ЛП неограничена.

- Симплекс-метод заканчивает работу, когда встретится одна из следущих двух ситуаций:
 - все приведенные стоимости неположительны;
 - ${\it 2}{\it 3}$ все компоненты вектора $h^j = B^{-1}A^j$ неположительны.
- В случае 1 текущее базисное решение x^* является двойственно допустимым и поэтому оптимальным.
- В случае 2 вектор

$$x(t) \stackrel{\text{def}}{=} (x(t)_J = B^{-1}b - th^j, x(t)_j = t, x(t)_{N \setminus \{J \cup \{j\}\}} = 0)$$

— допустимое решение задачи ЛП при любом t > 0.

- Так как $c^T x(t) = (c_J) T(B^{-1}(b tA^j) + tc_j = y^T b + t(c_j y^T A^j)$
- $\bar{c}_j = c_j y^T A^j > 0$, to $\lim_{t \to \infty} c^T x(t) = \infty$,
- т. е. в случае 2 целевая функция з-чи ЛП неограничена.

План лекции

- 1 Симплекс-метод
 - Базисы и базисные решения
 - Итерации симплекс-метода

- 2 Числовой пример
 - Симплекс-метод в форме уравнений
 - Симплекс-метод в табличной форме

Пример задачи ЛП

Решим следующую задачу ЛП:

$$5x_{1} + 2x_{2} + 3x_{3} \rightarrow \max,$$

$$2x_{1} + 3x_{2} + x_{3} \leq 10,$$

$$4x_{1} + 2x_{2} + 2x_{3} \leq 12,$$

$$2x_{1} + x_{2} + 2x_{3} \leq 8,$$

$$x_{1}, x_{2}, x_{3} \geq 0.$$
(2)

Пример задачи ЛП

Решим следующую задачу ЛП:

$$5x_{1} + 2x_{2} + 3x_{3} \rightarrow \max,$$

$$2x_{1} + 3x_{2} + x_{3} \leq 10,$$

$$4x_{1} + 2x_{2} + 2x_{3} \leq 12,$$

$$2x_{1} + x_{2} + 2x_{3} \leq 8,$$

$$x_{1}, x_{2}, x_{3} > 0.$$
(2)

Преобразование задачи ЛП в стандартную форму

• Вводя переменные недостатка x_4 , x_5 и x_6 , запишем эквивалентную задачу ЛП:

$$5x_{1} + 2x_{2} + 3x_{3} \rightarrow \max,$$

$$2x_{1} + 3x_{2} + x_{3} + x_{4} = 10,$$

$$4x_{1} + 2x_{2} + 2x_{3} + x_{5} = 12,$$

$$2x_{1} + x_{2} + 2x_{3} + x_{6} = 8,$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0.$$

$$(3)$$

- Столбцы, соответствующии переменным недостатка,
- которому соответствует допустимое базисное решение

• Вводя переменные недостатка x_4 , x_5 и x_6 , запишем эквивалентную задачу ЛП:

$$5x_{1} + 2x_{2} + 3x_{3} \rightarrow \max,$$

$$2x_{1} + 3x_{2} + x_{3} + x_{4} = 10,$$

$$4x_{1} + 2x_{2} + 2x_{3} + x_{5} = 12,$$

$$2x_{1} + x_{2} + 2x_{3} + x_{6} = 8,$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0.$$
(3)

- Столбцы, соответствующии переменным недостатка,
- которому соответствует допустимое базисное решение

• Вводя переменные недостатка x_4 , x_5 и x_6 , запишем эквивалентную задачу ЛП:

$$5x_{1} + 2x_{2} + 3x_{3} \rightarrow \max,$$

$$2x_{1} + 3x_{2} + x_{3} + x_{4} = 10,$$

$$4x_{1} + 2x_{2} + 2x_{3} + x_{5} = 12,$$

$$2x_{1} + x_{2} + 2x_{3} + x_{6} = 8,$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0.$$

$$(3)$$

- Столбцы, соответствующии переменным недостатка, образуют допустимое базисное множество $J^0 = \{4, 5, 6\}$,
- которому соответствует допустимое базисное решение $x^0 = (0, 0, 0, 10, 12, 8), c^T x^0 = 0.$

• Вводя переменные недостатка x_4 , x_5 и x_6 , запишем эквивалентную задачу ЛП:

$$5x_{1} + 2x_{2} + 3x_{3} \rightarrow \max,$$

$$2x_{1} + 3x_{2} + x_{3} + x_{4} = 10,$$

$$4x_{1} + 2x_{2} + 2x_{3} + x_{5} = 12,$$

$$2x_{1} + x_{2} + 2x_{3} + x_{6} = 8,$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0.$$

$$(3)$$

- Столбцы, соответствующии переменным недостатка, образуют допустимое базисное множество $J^0 = \{4, 5, 6\},$
- которому соответствует допустимое базисное решение $x^0 = (0, 0, 0, 10, 12, 8), c^T x^0 = 0.$

• Вводя переменные недостатка x_4 , x_5 и x_6 , запишем эквивалентную задачу ЛП:

$$5x_{1} + 2x_{2} + 3x_{3} \rightarrow \max,$$

$$2x_{1} + 3x_{2} + x_{3} + x_{4} = 10,$$

$$4x_{1} + 2x_{2} + 2x_{3} + x_{5} = 12,$$

$$2x_{1} + x_{2} + 2x_{3} + x_{6} = 8,$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0.$$
(3)

- Столбцы, соответствующии переменным недостатка, образуют допустимое базисное множество $J^0 = \{4, 5, 6\},$
- которому соответствует допустимое базисное решение $x^0 = (0, 0, 0, 10, 12, 8), c^T x^0 = 0.$
- Заменяя в (3) целевую функцию равенством $c^T x = 0$, получим систему:

• Заменяя в (3) целевую функцию равенством $c^T x = 0$, получим систему:

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0.$$

- Все столцы матрицы ограничений данной системы
- В строке целевой функции, все коэффициенты в

• Заменяя в (3) целевую функцию равенством $c^T x = 0$, получим систему:

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0.$$

- Все столцы матрицы ограничений данной системы уравнений, соответствующие базисным переменным, являются единичными.
- В строке целевой функции, все коэффициенты в

• Заменяя в (3) целевую функцию равенством $c^T x = 0$, получим систему:

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0.$$

- Все столцы матрицы ограничений данной системы уравнений, соответствующие базисным переменным, являются единичными.
- В строке целевой функции, все коэффициенты в базисных столбцах равны нулю.

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

 $2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$: $10/2 = 5$
 $4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12,$: $12/4 = 3$
 $2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8.$: $8/2 = 4$

- Если мы поочереди будем увеличивать на 1 значения
- Кажется, что нам выгоднее всего увеличивать значение
- Чтобы не нарушить уравнения 2, 3 и 4 (ограничения
- x_4 Ha 2ϵ , x_5 Ha 4ϵ , x_6 Ha 2ϵ .

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

 $2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$: $10/2 = 5$
 $4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12,$: $12/4 = 3$
 $2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8.$: $8/2 = 4$

- Если мы поочереди будем увеличивать на 1 значения небазисных переменных x_1 , x_2 и x_3 , то целевая функция вырастет соответственно на 5, 2 и 3.
- Кажется, что нам выгоднее всего увеличивать значение
- Чтобы не нарушить уравнения 2, 3 и 4 (ограничения
- x_4 Ha 2ϵ , x_5 Ha 4ϵ , x_6 Ha 2ϵ .

вывода из базиса

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10, : 10/2 = 5$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12, : 12/4 = 3$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8. : 8/2 = 4$$

- Если мы поочереди будем увеличивать на 1 значения небазисных переменных x_1 , x_2 и x_3 , то целевая функция вырастет соответственно на 5, 2 и 3.
- Кажется, что нам выгоднее всего увеличивать значение переменной x_1 . Мы так и поступим.
- Чтобы не нарушить уравнения 2, 3 и 4 (ограничения
- x_4 Ha 2ϵ , x_5 Ha 4ϵ , x_6 Ha 2ϵ .

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10, : 10/2 = 5$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12, : 12/4 = 3$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8. : 8/2 = 4$$

- Если мы поочереди будем увеличивать на 1 значения небазисных переменных x_1 , x_2 и x_3 , то целевая функция вырастет соответственно на 5, 2 и 3.
- Кажется, что нам выгоднее всего увеличивать значение переменной x_1 . Мы так и поступим.
- Чтобы не нарушить уравнения 2, 3 и 4 (ограничения нашей задачи), увеличение x_1 на ϵ , должно сопровождаться уменьшением базисных переменных:
- x_4 Ha 2ϵ , x_5 Ha 4ϵ , x_6 Ha 2ϵ .

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10, : 10/2 = 5$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12, : 12/4 = 3$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8. : 8/2 = 4$$

- Если мы поочереди будем увеличивать на 1 значения небазисных переменных x_1 , x_2 и x_3 , то целевая функция вырастет соответственно на 5, 2 и 3.
- Кажется, что нам выгоднее всего увеличивать значение переменной x_1 . Мы так и поступим.
- Чтобы не нарушить уравнения 2, 3 и 4 (ограничения нашей задачи), увеличение x_1 на ϵ , должно сопровождаться уменьшением базисных переменных:
- x_4 на 2ϵ , x_5 на 4ϵ , x_6 на 2ϵ .

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10, : 10/2 = 5$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12, : 12/4 = 3$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8. : 8/2 = 4$$

- Чтобы не нарушить уравнения 2, 3 и 4 (ограничения нашей задачи), увеличение x_1 на ϵ , должно сопровождаться уменьшением базисных переменных:
- x_4 Ha 2ϵ , x_5 Ha 4ϵ , x_6 Ha 2ϵ .
- Максимально возможное значение ϵ , при котором базисные переменные x_4 , x_5 и x_5 все еще остаются неотрицательными, определяется следующим образом:

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

 $2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$: $10/2 = 5$
 $4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12,$: $12/4 = 3$
 $2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8.$: $8/2 = 4$

- Чтобы не нарушить уравнения 2, 3 и 4 (ограничения нашей задачи), увеличение x_1 на ϵ , должно сопровождаться уменьшением базисных переменных:
- x_4 Ha 2ϵ , x_5 Ha 4ϵ , x_6 Ha 2ϵ .
- Максимально возможное значение ϵ , при котором базисные переменные x_4 , x_5 и x_5 все еще остаются неотрицательными, определяется следующим образом:
- ullet вычисляем отношения элементов столбца b правой части системы к соотв. положительным элементам ведущего столбца x_1

$$5x1 + 2x2 + 3x3 + 0x4 + 0x5 + 0x6 = 0,
2x1 + 3x2 + x3 + x4 + 0x5 + 0x6 = 10, : 10/2 = 5
4x1 + 2x2 + 2x3 + 0x4 + x5 + 0x6 = 12, : 12/4 = 3
2x1 + x2 + 2x3 + 0x4 + 0x5 + x6 = 8. : 8/2 = 4$$

- Максимально возможное значение ϵ , при котором базисные переменные x_4 , x_5 и x_5 все еще остаются неотрицательными, определяется следующим образом:
- ullet вычисляем отношения элементов столбца b правой части системы к соотв. положительным элементам ведущего столбца x_1
- и среди этих отношений выбираем наименьшее $(\epsilon = \min\{5, 3, 4\} = 3)$, которое находится в строке 3.
- Строка 3 объявляется ведущей строкой.

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10, : 10/2 = 5$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12, : 12/4 = 3$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8. : 8/2 = 4$$

- Максимально возможное значение ϵ , при котором базисные переменные x_4 , x_5 и x_5 все еще остаются неотрицательными, определяется следующим образом:
- ullet вычисляем отношения элементов столбца b правой части системы к соотв. положительным элементам ведущего столбца x_1
- и среди этих отношений выбираем наименьшее $(\epsilon = \min\{5, 3, 4\} = 3)$, которое находится в строке 3.
- Строка 3 объявляется ведущей строкой.

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10, : 10/2 = 5$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12, : 12/4 = 3$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8. : 8/2 = 4$$

- Строка 3 объявляется ведущей строкой.
- Заменяя в базисном множестве столбец 5 на столбец 1, получим новое базисное множество $J^1 = \{4, 1, 6\}.$

- Для всех положительных компонент ведущего столбца (соответствует увеличиваемой переменной)
- вычисляем отношение соответствующей компоненты
- среди этих отношений выбираем наименьшее (строка в
- из базисного множества выводим ту базисную

- Для всех положительных компонент ведущего столбца (соответствует увеличиваемой переменной)
- вычисляем отношение соответствующей компоненты вектора правой части к данной компоненте ведущего столбца;
- среди этих отношений выбираем наименьшее (строка в
- из базисного множества выводим ту базисную

Выбор переменной для вывода из базис

- Для всех положительных компонент ведущего столбца (соответствует увеличиваемой переменной)
- вычисляем отношение соответствующей компоненты вектора правой части к данной компоненте ведущего столбца;
- среди этих отношений выбираем наименьшее (строка в которой достигается это минимальное отношение называется ведущей);
- из базисного множества выводим ту базисную

Выбор переменной для вывода из базис

- Для всех положительных компонент ведущего столбца (соответствует увеличиваемой переменной)
- вычисляем отношение соответствующей компоненты вектора правой части к данной компоненте ведущего столбца;
- среди этих отношений выбираем наименьшее (строка в которой достигается это минимальное отношение называется ведущей);
- из базисного множества выводим ту базисную переменную, которая встречается в ведущей строке с ненулевым коэффициентом.

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

- Чтобы завершить первую итерацию симплекс-метода, осталось выполнить *операцию замещения*,
- которая должна преобразовать систему уравнений, чтобы все базисные столбцы были единичными.
- Для этого разделим равенство 3 на 4,
- а затем результат умножим
 - на 5 и отнимет от равенства 1
 - па 2 и отнимем от равенства 2.
 - в на 2 и отнимем от равенства 4.

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

- Чтобы завершить первую итерацию симплекс-метода, осталось выполнить операцию замещения,
- которая должна преобразовать систему уравнений,
- Для этого разделим равенство 3 на 4,
- а затем результат умножим

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

- Чтобы завершить первую итерацию симплекс-метода, осталось выполнить *операцию замещения*,
- которая должна преобразовать систему уравнений, чтобы все базисные столбцы были единичными.
- Для этого разделим равенство 3 на 4,
- а затем результат умножим
 - 🕛 на 5 и отнимет от равенства 1
 - на 2 и отнимем от равенства 2
 - на 2 и отнимем от равенства 4.

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$$

$$4x_1 + 2x_2 + 2x_3 + 0x_4 + x_5 + 0x_6 = 12,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

- Чтобы завершить первую итерацию симплекс-метода, осталось выполнить *операцию замещения*,
- которая должна преобразовать систему уравнений, чтобы все базисные столбцы были единичными.
- Для этого разделим равенство 3 на 4,
- а затем результат умножим
 - на 5 и отнимет от равенства 1.
 - на 2 и отнимем от равенства 2
 - 💿 на 2 и отнимем от равенства 4.

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

- Чтобы завершить первую итерацию симплекс-метода, осталось выполнить операцию замещения,
- которая должна преобразовать систему уравнений, чтобы все базисные столбцы были единичными.
- Для этого разделим равенство 3 на 4,
- а затем результат умножим

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

- Чтобы завершить первую итерацию симплекс-метода, осталось выполнить операцию замещения,
- которая должна преобразовать систему уравнений, чтобы все базисные столбцы были единичными.
- Для этого разделим равенство 3 на 4,
- а затем результат умножим

$$5x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 = 0,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

- Чтобы завершить первую итерацию симплекс-метода, осталось выполнить *операцию замещения*,
- которая должна преобразовать систему уравнений, чтобы все базисные столбцы были единичными.
- Для этого разделим равенство 3 на 4,
- а затем результат умножим
 - на 5 и отнимет от равенства 1,
 - 2 на 2 и отнимем от равенства 2,
 - ва 2 и отнимем от равенства 4.

$$0x_1 - \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 - \frac{5}{4}x_5 + 0x_6 = -15,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

- Чтобы завершить первую итерацию симплекс-метода, осталось выполнить операцию замещения,
- которая должна преобразовать систему уравнений, чтобы все базисные столбцы были единичными.
- Для этого разделим равенство 3 на 4,
- а затем результат умножим
 - на 5 и отнимет от равенства 1,

$$0x_1 - \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 - \frac{5}{4}x_5 + 0x_6 = -15,$$

$$2x_1 + 3x_2 + x_3 + x_4 + 0x_5 + 0x_6 = 10,$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

- Чтобы завершить первую итерацию симплекс-метода, осталось выполнить операцию замещения,
- которая должна преобразовать систему уравнений, чтобы все базисные столбцы были единичными.
- Для этого разделим равенство 3 на 4,
- а затем результат умножим
 - на 5 и отнимет от равенства 1,
 - **2** на 2 и отнимем от равенства 2,

$$0x_1 - \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 - \frac{5}{4}x_5 + 0x_6 = -15,$$

$$0x_1 + 2x_2 + 0x_3 + x_4 - \frac{1}{2}x_5 + 0x_6 = 4,$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

- Чтобы завершить первую итерацию симплекс-метода, осталось выполнить операцию замещения,
- которая должна преобразовать систему уравнений, чтобы все базисные столбцы были единичными.
- Для этого разделим равенство 3 на 4,
- а затем результат умножим
 - на 5 и отнимет от равенства 1,
 - на 2 и отнимем от равенства 2,

$$0x_1 - \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 - \frac{5}{4}x_5 + 0x_6 = -15,$$

$$0x_1 + 2x_2 + 0x_3 + x_4 - \frac{1}{2}x_5 + 0x_6 = 4,$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$2x_1 + x_2 + 2x_3 + 0x_4 + 0x_5 + x_6 = 8,$$

- Чтобы завершить первую итерацию симплекс-метода, осталось выполнить операцию замещения,
- которая должна преобразовать систему уравнений, чтобы все базисные столбцы были единичными.
- Для этого разделим равенство 3 на 4,
- а затем результат умножим
 - на 5 и отнимет от равенства 1,
 - на 2 и отнимем от равенства 2,
 - **3** на 2 и отнимем от равенства 4.

$$0x_1 - \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 - \frac{5}{4}x_5 + 0x_6 = -15,$$

$$0x_1 + 2x_2 + 0x_3 + x_4 - \frac{1}{2}x_5 + 0x_6 = 4,$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$0x_1 + 0x_2 + x_3 + 0x_4 - \frac{1}{2}x_5 + x_6 = 2.$$

- Чтобы завершить первую итерацию симплекс-метода, осталось выполнить операцию замещения,
- которая должна преобразовать систему уравнений, чтобы все базисные столбцы были единичными.
- Для этого разделим равенство 3 на 4,
- а затем результат умножим
 - на 5 и отнимет от равенства 1,
 - на 2 и отнимем от равенства 2,
 - **3** на 2 и отнимем от равенства 4.

$$0x_{1} - \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} - \frac{5}{4}x_{5} + 0x_{6} = -15,$$

$$0x_{1} + 2x_{2} + 0x_{3} + x_{4} - \frac{1}{2}x_{5} + 0x_{6} = 4,$$

$$1x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} + \frac{1}{4}x_{5} + 0x_{6} = 3,$$

$$0x_{1} + 0x_{2} + x_{3} + 0x_{4} - \frac{1}{2}x_{5} + x_{6} = 2$$

$$2/1 = 2.$$

- Теперь наибольший целевой коэффициент 1/2 у
- увеличивая которую мы будем уменьшать значения
- \bullet Вычисляем отношения компонент вектора b к
- Наименьшее значение 2 находится в строке 4, которая

$$0x_{1} - \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} - \frac{5}{4}x_{5} + 0x_{6} = -15,$$

$$0x_{1} + 2x_{2} + 0x_{3} + x_{4} - \frac{1}{2}x_{5} + 0x_{6} = 4,$$

$$1x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} + \frac{1}{4}x_{5} + 0x_{6} = 3,$$

$$0x_{1} + 0x_{2} + x_{3} + 0x_{4} - \frac{1}{2}x_{5} + x_{6} = 2$$

$$2/1 = 2.$$

- Теперь наибольший целевой коэффициент 1/2 у переменной x_3 ,
- увеличивая которую мы будем уменьшать значения
- Наименьшее значение 2 находится в строке 4, которая

$$0x_{1} - \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} - \frac{5}{4}x_{5} + 0x_{6} = -15,$$

$$0x_{1} + 2x_{2} + 0x_{3} + x_{4} - \frac{1}{2}x_{5} + 0x_{6} = 4,$$

$$1x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} + \frac{1}{4}x_{5} + 0x_{6} = 3,$$

$$0x_{1} + 0x_{2} + x_{3} + 0x_{4} - \frac{1}{2}x_{5} + x_{6} = 2$$

$$2/1 = 2.$$

- Теперь наибольший целевой коэффициент 1/2 у переменной x_3 ,
- увеличивая которую мы будем уменьшать значения базисных переменных x_1 и x_6 .
- Наименьшее значение 2 находится в строке 4, которая

$$0x_{1} - \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} - \frac{5}{4}x_{5} + 0x_{6} = -15,$$

$$0x_{1} + 2x_{2} + 0x_{3} + x_{4} - \frac{1}{2}x_{5} + 0x_{6} = 4,$$

$$1x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} + \frac{1}{4}x_{5} + 0x_{6} = 3,$$

$$0x_{1} + 0x_{2} + x_{3} + 0x_{4} - \frac{1}{2}x_{5} + x_{6} = 2$$

$$0x_{1} + 0x_{2} + x_{3} + 0x_{4} - \frac{1}{2}x_{5} + x_{6} = 2$$

$$0x_{1} + 0x_{2} + x_{3} + 0x_{4} - \frac{1}{2}x_{5} + x_{6} = 2$$

$$0x_{1} + 0x_{2} + x_{3} + 0x_{4} - \frac{1}{2}x_{5} + x_{6} = 2$$

$$0x_{1} + 0x_{2} + x_{3} + 0x_{4} - \frac{1}{2}x_{5} + x_{6} = 2$$

$$0x_{1} + 0x_{2} + x_{3} + 0x_{4} - \frac{1}{2}x_{5} + x_{6} = 2$$

- Теперь наибольший целевой коэффициент 1/2 у переменной x_3 ,
- увеличивая которую мы будем уменьшать значения базисных переменных x_1 и x_6 .
- ullet Вычисляем отношения компонент вектора b к компонентам столбца x_2 .
- Наименьшее значение 2 находится в строке 4, которая

$$0x_{1} - \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} - \frac{5}{4}x_{5} + 0x_{6} = -15,$$

$$0x_{1} + 2x_{2} + 0x_{3} + x_{4} - \frac{1}{2}x_{5} + 0x_{6} = 4, \qquad : \infty$$

$$1x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} + \frac{1}{4}x_{5} + 0x_{6} = 3, \qquad : 3/(1/2) = 6$$

$$0x_{1} + 0x_{2} + x_{3} + 0x_{4} - \frac{1}{2}x_{5} + x_{6} = 2 \qquad : 2/1 = 2.$$

- Теперь наибольший целевой коэффициент 1/2 у переменной x_3 ,
- увеличивая которую мы будем уменьшать значения базисных переменных x_1 и x_6 .
- ullet Вычисляем отношения компонент вектора b к компонентам столбца x_2 .
- Наименьшее значение 2 находится в строке 4, которая

$$0x_{1} - \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} - \frac{5}{4}x_{5} + 0x_{6} = -15,$$

$$0x_{1} + 2x_{2} + 0x_{3} + x_{4} - \frac{1}{2}x_{5} + 0x_{6} = 4, : \infty$$

$$1x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} + \frac{1}{4}x_{5} + 0x_{6} = 3, : 3/(1/2) = 6$$

$$0x_{1} + 0x_{2} + x_{3} + 0x_{4} - \frac{1}{2}x_{5} + x_{6} = 2 : 2/1 = 2.$$

- Теперь наибольший целевой коэффициент 1/2 у переменной x_3 ,
- увеличивая которую мы будем уменьшать значения базисных переменных x_1 и x_6 .
- ullet Вычисляем отношения компонент вектора b к компонентам столбца x_2 .
- Наименьшее значение 2 находится в строке 4, которая будет ведущей на данной итерации.

$$0x_{1} - \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} - \frac{5}{4}x_{5} + 0x_{6} = -15,$$

$$0x_{1} + 2x_{2} + 0x_{3} + x_{4} - \frac{1}{2}x_{5} + 0x_{6} = 4, : \infty$$

$$1x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} + 0x_{4} + \frac{1}{4}x_{5} + 0x_{6} = 3, : 3/(1/2) = 6$$

$$0x_{1} + 0x_{2} + x_{3} + 0x_{4} - \frac{1}{2}x_{5} + x_{6} = 2 : 2/1 = 2.$$

- Наименьшее значение 2 находится в строке 4, которая будет ведущей на данной итерации.
- Поэтому новое базисное множество будет следующим: $J^2 = \{4, 1, 3\}.$

$$0x_1 - \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 - \frac{5}{4}x_5 + 0x_6 = -15,$$

$$0x_1 + 2x_2 + 0x_3 + x_4 - \frac{1}{2}x_5 + 0x_6 = 4,$$

$$1x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$0x_1 + 0x_2 + x_3 + 0x_4 - \frac{1}{2}x_5 + x_6 = 2.$$

- Выполняем оперецию замещения:
- Новое базисное решение следующее: $x^2 = (2, 0, 2, 4, 0, 0)^T$.
- Так как все целевые коэффициенты неположительны,
- Удаляя значения переменных недостатка, получим

$$0x_1 - \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 - \frac{5}{4}x_5 + 0x_6 = -15,$$

$$0x_1 + 2x_2 + 0x_3 + x_4 - \frac{1}{2}x_5 + 0x_6 = 4,$$

$$1x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$0x_1 + 0x_2 + x_3 + 0x_4 - \frac{1}{2}x_5 + x_6 = 2.$$

- Выполняем оперецию замещения:
- Новое базисное решение следующее: $x^2 = (2, 0, 2, 4, 0, 0)^T$.
- Так как все целевые коэффициенты неположительны,
- Удаляя значения переменных недостатка, получим

$$0x_1 - \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 - \frac{5}{4}x_5 + 0x_6 = -15,$$

$$0x_1 + 2x_2 + 0x_3 + x_4 - \frac{1}{2}x_5 + 0x_6 = 4,$$

$$1x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$0x_1 + 0x_2 + x_3 + 0x_4 - \frac{1}{2}x_5 + x_6 = 2.$$

- Выполняем оперецию замещения:
 - умножаем строку 4 на 1/2 и отнимаем от строки 1,
 - 2 умножаем строку 4 на 1/2 и отнимаем от строки 3.
- Новое базисное решение следующее: $x^2 = (2, 0, 2, 4, 0, 0)^T$.
- Так как все целевые коэффициенты неположительны,
- Удаляя значения переменных недостатка, получим

$$0x_1 - \frac{1}{2}x_2 + 0x_3 + 0x_4 - x_5 - \frac{1}{2}x_6 = -16,$$

$$0x_1 + 2x_2 + 0x_3 + x_4 - \frac{1}{2}x_5 + 0x_6 = 4,$$

$$1x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$0x_1 + 0x_2 + x_3 + 0x_4 - \frac{1}{2}x_5 + x_6 = 2.$$

- Выполняем оперецию замещения:
 - умножаем строку 4 на 1/2 и отнимаем от строки 1,
 - 2 умножаем строку 4 на 1/2 и отнимаем от строки 3.
- Новое базисное решение следующее: $x^2 = (2, 0, 2, 4, 0, 0)^T$.
- Так как все целевые коэффициенты неположительны,
- Удаляя значения переменных недостатка, получим

$$0x_1 - \frac{1}{2}x_2 + 0x_3 + 0x_4 - x_5 - \frac{1}{2}x_6 = -16,$$

$$0x_1 + 2x_2 + 0x_3 + x_4 - \frac{1}{2}x_5 + 0x_6 = 4,$$

$$1x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + 0x_4 + \frac{1}{4}x_5 + 0x_6 = 3,$$

$$0x_1 + 0x_2 + x_3 + 0x_4 - \frac{1}{2}x_5 + x_6 = 2.$$

- Выполняем оперецию замещения:
 - умножаем строку 4 на 1/2 и отнимаем от строки 1,
 - умножаем строку 4 на 1/2 и отнимаем от строки 3.
- Новое базисное решение следующее: $x^2 = (2, 0, 2, 4, 0, 0)^T$.
- Так как все целевые коэффициенты неположительны,
- Удаляя значения переменных недостатка, получим

$$0x_1 - \frac{1}{2}x_2 + 0x_3 + 0x_4 - x_5 - \frac{1}{2}x_6 = -16,$$

$$0x_1 + 2x_2 + 0x_3 + x_4 - \frac{1}{2}x_5 + 0x_6 = 4,$$

$$1x_1 + \frac{1}{2}x_2 + 0x_3 + 0x_4 + \frac{1}{2}x_5 - \frac{1}{2}x_6 = 2,$$

$$0x_1 + 0x_2 + x_3 + 0x_4 - \frac{1}{2}x_5 + x_6 = 2.$$

- Выполняем оперецию замещения:
 - умножаем строку 4 на 1/2 и отнимаем от строки 1,
 - умножаем строку 4 на 1/2 и отнимаем от строки 3.
- Новое базисное решение следующее: $x^2 = (2, 0, 2, 4, 0, 0)^T$.
- Так как все целевые коэффициенты неположительны,
- Удаляя значения переменных недостатка, получим

$$0x_1 - \frac{1}{2}x_2 + 0x_3 + 0x_4 - x_5 - \frac{1}{2}x_6 = -16,$$

$$0x_1 + 2x_2 + 0x_3 + x_4 - \frac{1}{2}x_5 + 0x_6 = 4,$$

$$1x_1 + \frac{1}{2}x_2 + 0x_3 + 0x_4 + \frac{1}{2}x_5 - \frac{1}{2}x_6 = 2,$$

$$0x_1 + 0x_2 + x_3 + 0x_4 - \frac{1}{2}x_5 + x_6 = 2.$$

- Выполняем оперецию замещения:
 - **1** умножаем строку 4 на 1/2 и отнимаем от строки 1,
 - 2 умножаем строку 4 на 1/2 и отнимаем от строки 3.
- Новое базисное решение следующее: $x^2 = (2, 0, 2, 4, 0, 0)^T$.
- Так как все целевые коэффициенты *неположительны*, то текущее базисное решение x^2 оптимально.
- Удаляя значения переменных недостатка, получим оптимальное решение $x^* = (2,0,2)^T$ исходной задачи ЛП.

$$0x_1 - \frac{1}{2}x_2 + 0x_3 + 0x_4 - x_5 - \frac{1}{2}x_6 = -16,$$

$$0x_1 + 2x_2 + 0x_3 + x_4 - \frac{1}{2}x_5 + 0x_6 = 4,$$

$$1x_1 + \frac{1}{2}x_2 + 0x_3 + 0x_4 + \frac{1}{2}x_5 - \frac{1}{2}x_6 = 2,$$

$$0x_1 + 0x_2 + x_3 + 0x_4 - \frac{1}{2}x_5 + x_6 = 2.$$

- Выполняем оперецию замещения:
 - **1** умножаем строку 4 на 1/2 и отнимаем от строки 1,
 - 2 умножаем строку 4 на 1/2 и отнимаем от строки 3.
- Новое базисное решение следующее: $x^2 = (2, 0, 2, 4, 0, 0)^T$.
- Так как все целевые коэффициенты *неположительны*, то текущее базисное решение x^2 оптимально.
- Удаляя значения переменных недостатка, получим оптимальное решение $x^* = (2,0,2)^T$ исходной задачи ЛП.

$$0x_1 - \frac{1}{2}x_2 + 0x_3 + 0x_4 - x_5 - \frac{1}{2}x_6 = -16,$$

$$0x_1 + 2x_2 + 0x_3 + x_4 - \frac{1}{2}x_5 + 0x_6 = 4,$$

$$1x_1 + \frac{1}{2}x_2 + 0x_3 + 0x_4 + \frac{1}{2}x_5 - \frac{1}{2}x_6 = 2,$$

$$0x_1 + 0x_2 + x_3 + 0x_4 - \frac{1}{2}x_5 + x_6 = 2.$$

- Выполняем оперецию замещения:
 - умножаем строку 4 на 1/2 и отнимаем от строки 1,
 - 2 умножаем строку 4 на 1/2 и отнимаем от строки 3.
- Новое базисное решение следующее: $x^2 = (2, 0, 2, 4, 0, 0)^T$.
- Так как все целевые коэффициенты *неположительны*, то текущее базисное решение x^2 оптимально.
- Удаляя значения переменных недостатка, получим оптимальное решение $x^* = (2,0,2)^T$ исходной задачи ЛП.

- 1 Симплекс-метод
 - Базисы и базисные решения
 - Итерации симплекс-метода

- 2 Числовой пример
 - Симплекс-метод в форме уравнений
 - Симплекс-метод в табличной форме

Запишем систему уравнений задачи ЛП

$$5x_1 + 2x_2 + 3x_3 \rightarrow \max,$$

$$2x_1 + 3x_2 + x_3 + x_4 = 10,$$

$$4x_1 + 2x_2 + 2x_3 + x_5 = 12,$$

$$2x_1 + x_2 + 2x_3 + x_6 = 8,$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0.$$

в табличной форме:

x_1	x_2	Х3	x_4	<i>X</i> ₅	<i>x</i> ₆	b
5	2	3	0	0	0	0
2	3	1	1	0	0	10
4	2	2	0	1	0	12
2	1	2	0	0	1	8

Запишем систему уравнений задачи ЛП

$$5x_1 + 2x_2 + 3x_3 \rightarrow \max,$$

$$2x_1 + 3x_2 + x_3 + x_4 = 10,$$

$$4x_1 + 2x_2 + 2x_3 + x_5 = 12,$$

$$2x_1 + x_2 + 2x_3 + x_6 = 8,$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0.$$

в табличной форме:

x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	b
5	2	3	0	0	0	0
2	3	1	1	0	0	10
4	2	2	0	1	0	12
2	1	2	0	0	1	8

x_1	x_2	<i>x</i> ₃	χ_4	<i>x</i> ₅	<i>x</i> ₆	b
5	2	3	0	0	0	0
2	3	1	1	0	0	10
4	2	2	0	1	0	12
2	1	2	0	0	1	8

- Переместим столбец *b* в начало таблицы.
- Пометим строки таблицы символами:
- Столбец для записи отношений.

b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
0	5	2	3	0	0	0
10	2	3	1	1	0	0
12	4	2	2	0	1	0
8	2	1	2	0	0	1

- Переместим столбец *b* в начало таблицы.
- Столбец для записи отношений.

b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
0	5	2	3	0	0	0
10	2	3	1	1	0	0
12	4	2	2	0	1	0
8	2	1	2	0	0	1

- Переместим столбец *b* в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;

 - x_6 строка базисной переменной x_6 .
- Столбец для записи отношений.

	b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
-z	0	5	2	3	0	0	0
	10	2	3	1	1	0	0
	12	4	2	2	0	1	0
	8	2	1	2	0	0	1

- Переместим столбец *b* в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;
 - x_4 строка базисной переменной x_4 :
 - x_5 строка базисной переменной x_5 :
- Столбец для записи отношений.

	b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
-z	0	5	2	3	0	0	0
<i>x</i> ₄	10	2	3	1	1	0	0
	12	4	2	2	0	1	0
	8	2	1	2	0	0	1

- Переместим столбец *b* в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;
 - x_4 строка базисной переменной x_4 ;
 - x_5 строка базисной переменной x_5 :
- Столбец для записи отношений.

	b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
-z	0	5	2	3	0	0	0
x_4	10	2	3	1	1	0	0
<i>x</i> ₅	12	4	2	2	0	1	0
	8	2	1	2	0	0	1

- Переместим столбец *b* в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;
 - x_4 строка базисной переменной x_4 ;
 - x_5 строка базисной переменной x_5 ;
- Столбец для записи отношений.

	b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
-z	0	5	2	3	0	0	0
x_4	10	2	3	1	1	0	0
<i>X</i> 5	12	4	2	2	0	1	0
x_6	8	2	1	2	0	0	1

- Переместим столбец *b* в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;
 - x_4 строка базисной переменной x_4 ;
 - x_5 строка базисной переменной x_5 ;
 - x_6 строка базисной переменной x_6 .
- Столбец для записи отношений.

-z	<i>b</i> 0	x_1 5	x_2	x_3	x_4	$x_5 = 0$	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
<i>x</i> ₅	12	4	2	2	0	1	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переместим столбец b в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;
 - x_4 строка базисной переменной x_4 ;
 - x_5 строка базисной переменной x_5 ;
 - x_6 строка базисной переменной x_6 .
- Столбец для записи отношений.

-z	<i>b</i> 0	x_1 5	x_2	<i>x</i> ₃ 3	$x_4 \\ 0$	$x_5 \\ 0$	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
<i>x</i> ₅	12	4	2	2	0	1	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Наибольший коэффициент в строке -z имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	$x_1 \\ 5$	x_2	<i>x</i> ₃ 3	$x_4 \\ 0$	$x_5 = 0$	$x_6 \\ 0$	Отно- шения
x_4	10	2	3	1	1	0	0	
<i>x</i> ₅	12	4	2	2	0	1	0	
x_6	8	2	1	2	0	0	1	

- Наибольший коэффициент в строке -z имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	$x_4 \\ 0$	x_5 0	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>x</i> ₅	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
<i>x</i> ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке *-z* имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.

- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	x_4	$x_5 = 0$	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>x</i> ₅	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
<i>x</i> ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке *-z* имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- ullet Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	$x_4 \\ 0$	x_5 0	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>x</i> ₅	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
<i>x</i> ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке *-z* имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- ullet Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	$x_4 \\ 0$	x_5	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>x</i> ₅	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
<i>x</i> ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке *-z* имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- ullet Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	$x_4 \\ 0$	x_5	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>x</i> ₅	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
<i>x</i> ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке *-z* имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- ullet Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	$x_4 \\ 0$	x_5	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>x</i> ₅	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
<i>x</i> ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке *-z* имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- ullet Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	x_4	x_5	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>x</i> ₅	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
<i>x</i> ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке *-z* имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- ullet Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	x_4	$x_5 \\ 0$	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
<i>x</i> ₅	12	4	2	2	0	1	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная x_5 должна покинуть базис,
- \bullet а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - \bigcirc на 5 и отнимет от строки -z,
 - \bigcirc на 2 и отнимем от строки x_4
 - \bigcirc на 2 и отнимем от строки x_6 .

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	x_4	$x_5 = 0$	$x_6 \\ 0$	Отно- шения
<i>X</i> 4	10	2	3	1	1	0	0	
<i>x</i> ₅	12	4	2	2	0	1	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная x_5 должна покинуть базис,
- Делим ведущую строку на 4,
- а затем результат умножим

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	x_4	$x_5 \\ 0$	$x_6 \\ 0$	Отно- шения
<i>X</i> 4	10	2	3	1	1	0	0	
x_1	12	4	2	2	0	1	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная x_5 должна покинуть базис,
- а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	x_4	$x_5 \\ 0$	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
x_1	12	4	2	2	0	1	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная x_5 должна покинуть базис,
- а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	x_4	$x_5 \\ 0$	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная x_5 должна покинуть базис,
- а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	x_4	$x_5 \\ 0$	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная x_5 должна покинуть базис,
- а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	x_4	x_5 0	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная x_5 должна покинуть базис,
- а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - **1** Ha 5 и отнимет от строки -z,
 - \bigcirc на 2 и отнимем от строки x_4 ,
 - \bigcirc на 2 и отнимем от строки x_6 .

-z	<i>b</i> -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$x_5 - \frac{5}{4}$	<i>x</i> ₆ 0	Отно- шения
x_4	10	2	3	1	1	0	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная х₅ должна покинуть базис,
- ullet а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - **1** Ha 5 и отнимет от строки -z,
 - \bigcirc на 2 и отнимем от строки x_4
 - \bigcirc на 2 и отнимем от строки x_6 .

-z	<i>b</i> -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$x_5 - \frac{5}{4}$	$x_6 \\ 0$	Отно- шения
x_4	10	2	3	1	1	0	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная х₅ должна покинуть базис,
- ullet а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - **1** Ha 5 и отнимет от строки -z,
 - $\mathbf{2}$ на 2 и отнимем от строки x_4 ,
 - в на 2 и отнимем от строки та

-z	<i>b</i> -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	$x_4 \\ 0$	$x_5 - \frac{5}{4}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная х₅ должна покинуть базис,
- а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - **1** Ha 5 и отнимет от строки -z,
 - \bigcirc на 2 и отнимем от строки x_4 ,

-z	<i>b</i> -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$x_5 - \frac{5}{4}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная х₅ должна покинуть базис,
- ullet а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - **1** Ha 5 и отнимет от строки -z,
 - \bigcirc на 2 и отнимем от строки x_4 ,
 - \bullet на 2 и отнимем от строки x_6 .

-z	<i>b</i> -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	$x_4 \\ 0$	$x_5 - \frac{5}{4}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная х₅ должна покинуть базис,
- а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - **1** Ha 5 и отнимет от строки -z,
 - \bigcirc на 2 и отнимем от строки x_4 ,
 - на 2 и отнимем от строки x_6 .

-z	b -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$x_5 - \frac{5}{4}$	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	

- Наибольший коэффициент в строке -z имеет переменная x_3 .
- Объявляем столбец x_3 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку х₆ ведущей.

-z	b -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4 0	$x_5 - \frac{5}{4}$	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	

- Наибольший коэффициент в строке -z имеет переменная x_3 .
- Объявляем столбец x_3 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку х₆ ведущей.

-z	b -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$x_5 - \frac{5}{4}$	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке z имеет переменная x_3 .
- Объявляем столбец x_3 ведущим.

- Объявляем строку х₆ ведущей.

-z	b -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$x_5 - \frac{5}{4}$	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке z имеет переменная x_3 .
- Объявляем столбец x₃ ведущим.
- ullet Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Объявляем строку х₆ ведущей.

-z	b -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4 0	$x_5 - \frac{5}{4}$	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке *-z* имеет переменная x_3 .
- Объявляем столбец x₃ ведущим.
- ullet Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Объявляем строку х₆ ведущей.

-z	b -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$x_5 - \frac{5}{4}$	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

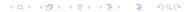
- Наибольший коэффициент в строке z имеет переменная x_3 .
- Объявляем столбец x₃ ведущим.
- ullet Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Объявляем строку х₆ ведущей.

-z	b -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$x_5 - \frac{5}{4}$	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке z имеет переменная x_3 .
- Объявляем столбец x₃ ведущим.
- ullet Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Объявляем строку х₆ ведущей.

-z	b -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$x_5 - \frac{5}{4}$	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке z имеет переменная x_3 .
- Объявляем столбец x₃ ведущим.
- ullet Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку х₆ ведущей.



-z	b -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$x_5 - \frac{5}{4}$	$x_6 \\ 0$	Отно- шения
x_4	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке z имеет переменная x_3 .
- Объявляем столбец х₃ ведущим.
- ullet Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку x_6 ведущей.

-z	b -15	x_1	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$x_5 - \frac{5}{4}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- а ее место должна занять переменная x_3 .
- Ведущую строку умножим
 - \bigcirc на 1/2 и отнимет от строки -z,
 - \bigcirc на 1/2 и отнимем от строки x_1 ,

-z	b -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4 0	$x_5 - \frac{5}{4}$	x_6 0	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,

-z	b -15	x_1	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$x_5 - \frac{5}{4}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₃	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- а ее место должна занять переменная x_3 .

-z	b -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4 0	$x_5 - \frac{5}{4}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₃	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- ullet а ее место должна занять переменная x_3 .
- Ведущую строку умножим
 - **1** Ha 1/2 и отнимет от строки -z,
 - \bigcirc на 1/2 и отнимем от строки x_1 ,

-z	b -15	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4 0	$x_5 - \frac{5}{4}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₃	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- ullet а ее место должна занять переменная x_3 .
- Ведущую строку умножим
 - **1** Ha 1/2 и отнимет от строки -z,
 - \bigcirc на 1/2 и отнимем от строки x_1 ,

-z	b -16	x_1	$x_2 \\ -\frac{1}{2}$	x_3 0	x_4 0	<i>x</i> ₅ -1	$x_6 \\ -\frac{1}{2}$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₃	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- ullet а ее место должна занять переменная x_3 .
- Ведущую строку умножим
 - \bullet на 1/2 и отнимет от строки -z,
 - \bigcirc на 1/2 и отнимем от строки x_1 ,

-z	b -16	x_1	$x_2 \\ -\frac{1}{2}$	x_3 0	x_4 0	<i>x</i> ₅ -1	$x_6 \\ -\frac{1}{2}$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₃	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- ullet а ее место должна занять переменная x_3 .
- Ведущую строку умножим
 - \bullet на 1/2 и отнимет от строки -z,
 - \bigcirc на 1/2 и отнимем от строки x_1 ,

-z	b -16	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3 0	$\begin{bmatrix} x_4 \\ 0 \end{bmatrix}$	<i>x</i> ₅ -1	$x_6 \\ -\frac{1}{2}$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	2	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	
<i>x</i> ₃	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- а ее место должна занять переменная x_3 .
- Ведущую строку умножим
 - **1** Ha 1/2 и отнимет от строки -z,
 - \bigcirc на 1/2 и отнимем от строки x_1 ,

-z	<i>b</i> -16	x_1	$x_2 \\ -\frac{1}{2}$	x_3	$x_4 \\ 0$	<i>x</i> ₅ -1	$x_6 \\ -\frac{1}{2}$	Отно- шения
x_4	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	2	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	
<i>x</i> ₃	2	0	0	1	0	$-\frac{1}{2}$	1	

- Поскольку в строке z все коэффициенты неположительны, то эта таблица является оптимальной.
- В столбце b записаны ненулевые компоненты оптимального базисного решения.
- Поэтому $x^* = (2,0,2)^T$ опт. решение задачи.
- Теневые цены с отрицательным знаком записаны в строке *z* в позициях переменных недостатка.
- Поэтому $y^* = (0, 1, 1/2)^T$ есть вектор теневых цен.

-z	<i>b</i> -16	x_1	$x_2 \\ -\frac{1}{2}$	x_3	x_4 0	<i>x</i> ₅ -1	$x_6 \\ -\frac{1}{2}$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	2	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	
х3	2	0	0	1	0	$-\frac{1}{2}$	1	

- Поскольку в строке -z все коэффициенты неположительны, то эта таблица является оптимальной.
- В столбце в записаны ненулевые компоненты
- Теневые цены с отрицательным знаком записаны в
- Поэтому $y^* = (0, 1, 1/2)^T$ есть вектор теневых цен.

-z	<i>b</i> -16	x_1	$x_2 \\ -\frac{1}{2}$	x_3	x_4 0	<i>x</i> ₅ -1	$x_6 \\ -\frac{1}{2}$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	2	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	
<i>x</i> ₃	2	0	0	1	0	$-\frac{1}{2}$	1	

- Поскольку в строке -z все коэффициенты неположительны, то эта таблица является *оптимальной*.
- \bullet В столбце b записаны ненулевые компоненты оптимального базисного решения.
- Поэтому $x^* = (2,0,2)^T$ опт. решение задачи.
- Теневые цены с отрицательным знаком записаны в строке – z в позициях переменных недостатка.
- Поэтому $y^* = (0, 1, 1/2)^T$ есть вектор теневых цен.

-z	<i>b</i> -16	x_1 0	$x_2 \\ -\frac{1}{2}$	x_3	x_4	<i>x</i> ₅ -1	$x_6 - \frac{1}{2}$	Отно- шения
x_4	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	2	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	
<i>x</i> ₃	2	0	0	1	0	$-\frac{1}{2}$	1	

- Поскольку в строке -z все коэффициенты неположительны, то эта таблица является оптимальной.
- ullet В столбце b записаны ненулевые компоненты оптимального базисного решения.
- Поэтому $x^* = (2,0,2)^T$ опт. решение задачи.
- Теневые цены с отрицательным знаком записаны в
- Поэтому $y^* = (0, 1, 1/2)^T$ есть вектор теневых цен.

-z	<i>b</i> -16	$x_1 \\ 0$	$x_2 - \frac{1}{2}$	x_3	x_4	<i>x</i> ₅ -1	$x_6 \\ -\frac{1}{2}$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	2	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	
х3	2	0	0	1	0	$-\frac{1}{2}$	1	

- Поскольку в строке -z все коэффициенты неположительны, то эта таблица является оптимальной.
- В столбце в записаны ненулевые компоненты оптимального базисного решения.
- Поэтому $x^* = (2,0,2)^T$ опт. решение задачи.
- Теневые цены с отрицательным знаком записаны в строке -z в позициях переменных недостатка.
- Поэтому $y^* = (0, 1, 1/2)^T$ есть вектор теневых цен.

x_1 x_2 χ_3 x_4 χ_5 χ_6 Отно--16 0 шения 0 0 02 0 0 χ_{Δ} 2 1 0 0 x_1 00 0 x_3

- Поскольку в строке -z все коэффициенты неположительны, то эта таблица является *оптимальной*.
- В столбце b записаны ненулевые компоненты оптимального базисного решения.
- Поэтому $x^* = (2,0,2)^T$ опт. решение задачи.
- Теневые цены с отрицательным знаком записаны в строке -z в позициях переменных недостатка.
- Поэтому $y^* = (0, 1, 1/2)^T$ есть вектор теневых цен.