Транспортная задача

H.H. Писарук pisaruk@yandex.by

Экономический факультет Белорусский государственный университет

Минск - 2015

План лекции

- 1 Транспортная задача
 - ЛП формулировка
 - Метод потенциалов
 - Числовой пример

2 Агрегированное планирование

План лекции

- 1 Транспортная задача
 - ЛП формулировка
 - Метод потенциалов
 - Числовой пример

2 Агрегированное планирование

• Транспортная задача — это один из самых знаменитых частных случаев задачи ЛП.

- Имеется m поставщиков и n потребителей некоторого продукта.
- Поставщик i имеет a_i единиц данного продукта,
- ullet а потребитель j хочет получить b_i единиц продукта.
- Стоимость транспортировки единицы продукта от поставщика i потребителю j равна c_{ij} .
- Пусть x_{ij} обозначает количество продукта, доставляемого поставщиком i потребителю j.
- Нужно определить план поставок $X = [x_{ij}]$, для которого суммарные транспортные расходы минимальны.

Транспортная задача

- *Транспортная задача* это один из самых знаменитых частных случаев задачи ЛП.
- Имеется m поставщиков и n потребителей некоторого продукта.
- Поставщик i имеет a_i единиц данного продукта,
- ullet а потребитель j хочет получить b_j единиц продукта.
- Стоимость транспортировки единицы продукта от поставщика i потребителю j равна c_{ij} .
- Пусть x_{ij} обозначает количество продукта, доставляемого поставщиком i потребителю j.
- Нужно определить план поставок $X = [x_{ij}]$, для которого суммарные транспортные расходы минимальны.

Транспортная задача

- *Транспортная задача* это один из самых знаменитых частных случаев задачи ЛП.
- Имеется m поставщиков и n потребителей некоторого продукта.
- Поставщик i имеет a_i единиц данного продукта,
- ullet а потребитель j хочет получить b_i единиц продукта.
- Стоимость транспортировки единицы продукта от поставщика i потребителю j равна c_{ij} .
- Пусть x_{ij} обозначает количество продукта, доставляемого поставщиком i потребителю j.
- Нужно определить план поставок $X = [x_{ij}]$, для которого суммарные транспортные расходы минимальны.

- *Транспортная задача* это один из самых знаменитых частных случаев задачи ЛП.
- Имеется m поставщиков и n потребителей некоторого продукта.
- Поставщик i имеет a_i единиц данного продукта,
- ullet а потребитель j хочет получить b_i единиц продукта.
- Стоимость транспортировки единицы продукта от поставщика i потребителю j равна c_{ij} .
- Пусть x_{ij} обозначает количество продукта, доставляемого поставщиком i потребителю j.
- Нужно определить план поставок $X = [x_{ij}]$, для которого суммарные транспортные расходы минимальны.

• *Транспортная задача* — это один из самых знаменитых частных случаев задачи ЛП.

- Имеется m поставщиков и n потребителей некоторого продукта.
- Поставщик i имеет a_i единиц данного продукта,
- ullet а потребитель j хочет получить b_i единиц продукта.
- Стоимость транспортировки единицы продукта от поставщика i потребителю j равна c_{ij} .
- Пусть x_{ij} обозначает количество продукта, доставляемого поставщиком i потребителю j.
- Нужно определить план поставок $X = [x_{ij}]$, для которого суммарные транспортные расходы минимальны.

• *Транспортная задача* — это один из самых знаменитых

- частных случаев задачи ЛП. • Имеется m поставщиков и n потребителей некоторого
- продукта.

 Поставщик i имеет a_i единиц данного продукта,
- ullet а потребитель j хочет получить b_i единиц продукта.
- Стоимость транспортировки единицы продукта от
- Стоимость транспортировки единицы продукта от поставщика i потребителю j равна c_{ij} .
- Пусть x_{ij} обозначает количество продукта, доставляемого поставщиком i потребителю j.
- Нужно определить план поставок $X = [x_{ij}]$, для которого суммарные транспортные расходы минимальны.

• *Транспортная задача* — это один из самых знаменитых частных случаев задачи ЛП.

- Имеется m поставщиков и n потребителей некоторого продукта.
- Поставщик i имеет a_i единиц данного продукта,
- ullet а потребитель j хочет получить b_i единиц продукта.
- Стоимость транспортировки единицы продукта от поставщика i потребителю j равна c_{ij} .
- Пусть x_{ij} обозначает количество продукта, доставляемого поставщиком i потребителю j.
- Нужно определить план поставок $X = [x_{ij}]$, для которого суммарные транспортные расходы минимальны.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min,$$

$$\sum_{i=1}^{n} x_{ii} \leq a_{i}, \quad i = 1, \dots, m.$$

$$\sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n,$$
$$x_{ii} > 0, \quad i = 1, \dots, m; \ j = 1, \dots, n$$

Целью является минимизация суммарных транспортных издержек.

ЛП формулировка

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min,$$

$$\sum_{j=1}^{n} x_{ij} \le a_i, \quad i = 1, \dots, m,$$

$$\sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n,$$

$$x_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n.$$

Эти m неравенств требуют, чтобы суммарный объем поставок каждого поставщика не превосходил его возможностей.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow \min,$$

$$\sum_{j=1}^{n} x_{ij} \le a_i, \quad i = 1, \dots, m,$$

$$\sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n,$$

$$x_{ij} \ge 0, \quad i = 1, \dots, m; \quad j = 1, \dots, n.$$

Данные n равенств гарантируют, что каждый потребитель получит столько продукта, сколько ему нужно.

ЛП формулировка

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min,$$

$$\sum_{j=1}^{n} x_{ij} \le a_{i}, \quad i = 1, \dots, m,$$

$$\sum_{i=1}^{m} x_{ij} = b_{j}, \quad j = 1, \dots, n,$$

$$x_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n.$$

Последняя группа неравенств означает, что величины всех поставок неотрицательные.

План лекции

- 1 Транспортная задача
 - ЛП формулировка
 - Метод потенциалов
 - Числовой пример

2 Агрегированное планирование

- *Метод потенциалов* это симплекс-метод, примененный к ЛП формулировке транспортной задачи в предположении, что
- предложение равно спросу:

$$exc = \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j = 0.$$

- Если это не так, то
 - если exc < 0, нужно ввести фиктивного (m+1)-го поставщика с предложением $a_{m+1} = -exc$ и стоимостями поставок $c_{m+1,j} = 0, j = 1, \ldots, n$;
 - если exc > 0, нужно ввести фиктивного (n+1)-го потребителя со спросом $b_{n+1} = exc$ и стоимостями поставок $c_{i,n+1} = 0$, $i = 1, \ldots, m$.

- *Метод потенциалов* это симплекс-метод, примененный к ЛП формулировке транспортной задачи в предположении, что
- предложение равно спросу:

$$exc = \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j = 0.$$

- Если это не так, то
 - если exc < 0, нужно ввести фиктивного (m+1)-го поставщика с предложением $a_{m+1} = -exc$ и стоимостям поставок $c_{m+1} := 0$, $i = 1, \dots, n$:
 - если exc > 0, нужно ввести фиктивного (n+1)-го потребителя со спросом $b_{n+1} = exc$ и стоимостями поставок $c_{i,n+1} = 0$, $i = 1, \ldots, m$.

- *Метод потенциалов* это симплекс-метод, примененный к ЛП формулировке транспортной задачи в предположении, что
- предложение равно спросу:

$$exc = \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j = 0.$$

- Если это не так, то
 - если exc < 0, нужно ввести фиктивного (m+1)-го поставщика с предложением $a_{m+1} = -exc$ и стоимостями поставок $c_{m+1,j} = 0, j = 1, \ldots, n$;
 - если exc > 0, нужно ввести фиктивного (n+1)-го потребителя со спросом $b_{n+1} = exc$ и стоимостями поставок $c_{i,n+1} = 0$, $i = 1, \ldots, m$.

- *Метод потенциалов* это симплекс-метод, примененный к ЛП формулировке транспортной задачи в предположении, что
- предложение равно спросу:

$$exc = \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j = 0.$$

- Если это не так, то
 - если exc < 0, нужно ввести фиктивного (m+1)-го поставщика с предложением $a_{m+1} = -exc$ и стоимостями поставок $c_{m+1,j} = 0, j = 1, \ldots, n$;
 - если exc > 0, нужно ввести фиктивного (n+1)-го потребителя со спросом $b_{n+1} = exc$ и стоимостями поставок $c_{i,n+1} = 0$, $i = 1, \ldots, m$.

- Метод потенциалов это симплекс-метод, примененный к ЛП формулировке транспортной задачи в предположении, что
- предложение равно спросу:

$$exc = \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j = 0.$$

- Если это не так, то
 - если exc < 0, нужно ввести фиктивного (m+1)-го поставщика с предложением $a_{m+1} = -exc$ и стоимостями поставок $c_{m+1,j} = 0, j = 1, \ldots, n$;
 - если exc > 0, нужно ввести фиктивного (n+1)-го потребителя со спросом $b_{n+1} = exc$ и стоимостями поставок $c_{i,n+1} = 0$, $i = 1, \ldots, m$.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min,$$

$$\alpha_i : \sum_{j=1}^{n} x_{ij} = a_i, \quad i = 1, \dots, m,$$

$$\beta_j : \sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n,$$

$$x_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n.$$

- Припишем ограничениям двойственные переменные.
- Запишем двойственную к данной задаче ЛП:

$$\sum_{i=1}^{n} a_i \alpha_i + \sum_{j=1}^{n} b_j \beta_j \to \max,$$

$$\alpha_i + \beta_j \le c_{ij}, \quad i = 1, \dots, m; \ j = 1, \dots, n.$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min,$$

$$\alpha_i : \sum_{j=1}^{n} x_{ij} = a_i, \quad i = 1, \dots, m,$$

$$\beta_j : \sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n,$$

$$x_{ij} \ge 0, \quad i = 1, \dots, m; \quad j = 1, \dots, n.$$

- Припишем ограничениям двойственные переменные.
- Запишем двойственную к данной задаче ЛП:

$$\sum_{i=1}^{m} a_i \alpha_i + \sum_{j=1}^{n} b_j \beta_j \to \max,$$

$$\alpha_i + \beta_i \le c_{ii}, \quad i = 1, \dots, m;$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min,$$

$$\alpha_{i} : \sum_{j=1}^{n} x_{ij} = a_{i}, \quad i = 1, ..., m,$$

$$\beta_{j} : \sum_{i=1}^{m} x_{ij} = b_{j}, \quad j = 1, ..., n,$$

$$x_{ij} \ge 0, \quad i = 1, ..., m; \quad j = 1, ..., n.$$

- Припишем ограничениям двойственные переменные.
- Запишем двойственную к данной задаче ЛП:

$$\sum_{i=1} a_i \alpha_i + \sum_{j=1} b_j \beta_j \to \max,$$

$$\alpha_i + \beta_j \le c_{ij}, \quad i = 1, \dots, m; \ j = 1, \dots$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min,$$

$$\alpha_{i}: \sum_{j=1}^{n} x_{ij} = a_{i}, \quad i = 1, \dots, m,$$

$$\beta_{j}: \sum_{i=1}^{m} x_{ij} = b_{j}, \quad j = 1, \dots, n,$$

$$x_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n.$$

- Припишем ограничениям двойственные переменные.
- Запишем двойственную к данной задаче ЛП:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min,$$

$$\alpha_i : \sum_{j=1}^{n} x_{ij} = a_i, \quad i = 1, \dots, m,$$

$$\beta_j : \sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n,$$

$$x_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n.$$

- Припишем ограничениям двойственные переменные.
- Запишем двойственную к данной задаче ЛП:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min,$$

$$\alpha_i : \sum_{j=1}^{n} x_{ij} = a_i, \quad i = 1, \dots, m,$$

$$\beta_j : \sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n,$$

$$x_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n.$$

- Припишем ограничениям двойственные переменные.
- Запишем двойственную к данной задаче ЛП:

$$\sum_{i=1} a_i \alpha_i + \sum_{j=1} b_j \beta_j \to \max,$$

$$\alpha_i + \beta_j \le c_{ij}, \quad i = 1, \dots, m; \ j = 1, \dots, n.$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min,$$

$$\alpha_i : \sum_{j=1}^{n} x_{ij} = a_i, \quad i = 1, \dots, m,$$

$$\beta_j : \sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n,$$

$$x_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n.$$

- Припишем ограничениям двойственные переменные.
- Запишем двойственную к данной задаче ЛП:

$$\sum_{i=1}^{m} a_i \alpha_i + \sum_{j=1}^{n} b_j \beta_j \to \max,$$

$$\alpha_i + \beta_j \le c_{ij}, \quad i = 1, \dots, m; j = 1, \dots, n.$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min,$$

$$\alpha_i : \sum_{j=1}^{n} x_{ij} = a_i, \quad i = 1, \dots, m,$$

$$\beta_j : \sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n,$$

$$x_{ii} \ge 0, \quad i = 1, \dots, m; \quad j = 1, \dots, n.$$

- Припишем ограничениям двойственные переменные.
- Запишем двойственную к данной задаче ЛП:

$$\sum_{i=1}^{m} a_i \alpha_i + \sum_{j=1}^{n} b_j \beta_j \to \max,$$

$$\alpha_i + \beta_j \le c_{ij}, \quad i = 1, \dots, m; j = 1, \dots, n.$$

потенциалами.

ullet В методе потенциалов числа $lpha_i$ и eta_j называются

- Заметим, что для допустимого решения (α, β) двойственной задачи все приведенные стоимости $\bar{c}_{ij} \stackrel{\text{def}}{=} c_{ij} \alpha_i \beta_i$ неотрицательны.
- Из теоремы двойственности ЛП вытекает следующий критерий оптимальности.

Теорема

План поставок x является оптимальным тогда u только тогда, когда существуют такие потенциалы (α, β) , что

$$\bar{c}_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n,$$

 $\bar{c}_{ii}x_{ij} = 0, \quad i = 1, \dots, m; \ j = 1, \dots, n.$

- В методе потенциалов числа α_i и β_j называются потенциалами.
- Заметим, что для допустимого решения (α, β) двойственной задачи все приведенные стоимости $\bar{c}_{ij} \stackrel{\text{def}}{=} c_{ij} \alpha_i \beta_j$ неотрицательны.
- Из теоремы двойственности ЛП вытекает следующий критерий оптимальности.

Теорема

План поставок x является оптимальным тогда u только тогда, когда существуют такие потенциалы (α, β) , что

$$\bar{c}_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n,$$

• В методе потенциалов числа α_i и β_j называются потенциалами.

- Заметим, что для допустимого решения (α, β) двойственной задачи все приведенные стоимости $\bar{c}_{ij} \stackrel{\text{def}}{=} c_{ij} \alpha_i \beta_j$ неотрицательны.
- Из теоремы двойственности ЛП вытекает следующий критерий оптимальности.

Теорема

План поставок x является оптимальным тогда и только тогда, когда существуют такие потенциалы (α, β) , что

$$\bar{c}_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n,$$

 $\bar{c}_{ii}x_{ii} = 0, \quad i = 1, \dots, m; \ j = 1, \dots, n.$

- В методе потенциалов числа α_i и β_j называются потенциалами.
- Заметим, что для допустимого решения (α, β) двойственной задачи все приведенные стоимости $\bar{c}_{ij} \stackrel{\text{def}}{=} c_{ij} \alpha_i \beta_j$ неотрицательны.
- Из теоремы двойственности ЛП вытекает следующий критерий оптимальности.

Теорема

План поставок x является оптимальным тогда и только тогда, когда существуют такие потенциалы (α, β) , что

$$\bar{c}_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n,$$

 $\bar{c}_{ii}x_{ij} = 0, \quad i = 1, \dots, m; \ j = 1, \dots, n.$

- В методе потенциалов числа α_i и β_j называются потенциалами.
- Заметим, что для допустимого решения (α, β) двойственной задачи все приведенные стоимости $\bar{c}_{ij} \stackrel{\text{def}}{=} c_{ij} \alpha_i \beta_i$ неотрицательны.
- Из теоремы двойственности ЛП вытекает следующий критерий оптимальности.

Теорема

План поставок x является оптимальным тогда u только тогда, когда существуют такие потенциалы (α, β) , что

$$\bar{c}_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n,$$

 $\bar{c}_{ij}x_{ij} = 0, \quad i = 1, \dots, m; \ j = 1, \dots, n.$

- В методе потенциалов числа α_i и β_j называются потенциалами.
- Заметим, что для допустимого решения (α, β) двойственной задачи все приведенные стоимости $\bar{c}_{ij} \stackrel{\text{def}}{=} c_{ij} \alpha_i \beta_j$ неотрицательны.
- Из теоремы двойственности ЛП вытекает следующий критерий оптимальности.

Теорема

План поставок x является оптимальным тогда u только тогда, когда существуют такие потенциалы (α, β) , что

$$\bar{c}_{ij} \ge 0, \quad i = 1, \dots, m; \ j = 1, \dots, n,$$

 $\bar{c}_{ij}x_{ij} = 0, \quad i = 1, \dots, m; \ j = 1, \dots, n.$

Допустимое решение (план) x транспортной задачи ЛП является базисным решением, если

- ① имеется подмножество IJ из m+n-1 индексов переменных x_{ij} , таких, что $(i,j) \in IJ$ для всех $x_{ij} > 0$:
- **2** *IJ* является множеством ребер дерева в полном двудольном графе $\mathbf{K}_{m,n}$.

Здесь IJ есть базисное множество, а все x_{ij} для $(i,j) \in IJ$ являются базисными переменными.

Допустимое решение (план) x транспортной задачи ЛП является базисным решением, если

- имеется подмножество IJ из m+n-1 индексов переменных x_{ij} , таких, что $(i,j)\in IJ$ для всех $x_{ij}>0$;
- **2** *IJ* является множеством ребер дерева в полном двудольном графе $\mathbf{K}_{m,n}$.

Здесь IJ есть базисное множество, а все x_{ij} для $(i,j) \in IJ$ являются базисными переменными.

Допустимое решение (план) x транспортной задачи ЛП является базисным решением, если

- lacktriangled имеется подмножество IJ из m+n-1 индексов переменных x_{ij} , таких, что $(i,j)\in IJ$ для всех $x_{ij}>0$;
- **2** *IJ* является множеством ребер дерева в полном двудольном графе $\mathbf{K}_{m,n}$.

Здесь IJ есть базисное множество, а все x_{ij} для $(i,j) \in IJ$ являются базисными переменными.

Базисные планы

Допустимое решение (план) x транспортной задачи ЛП является базисным решением, если

- имеется подмножество IJ из m+n-1 индексов переменных x_{ii} , таких, что $(i,j) \in IJ$ для всех $x_{ii} > 0$;
- **2** *IJ* является множеством ребер дерева в полном двудольном графе $\mathbf{K}_{m,n}$.

Здесь IJ есть базисное множество,

а все x_{ij} для $(i,j) \in IJ$ являются базисными переменными

Базисные планы

Допустимое решение (план) x транспортной задачи ЛП является базисным решением, если

- имеется подмножество IJ из m+n-1 индексов переменных x_{ii} , таких, что $(i,j) \in IJ$ для всех $x_{ii} > 0$;
- 2 IJ является множеством ребер дерева в полном двудольном графе $\mathbf{K}_{m,n}$.

Здесь IJ есть базисное множество, а все x_{ii} для $(i,j) \in IJ$ являются базисными переменными.

Идея метода потенциалов

- Метод потенциалов на каждой итерации для текущего базисного решения x вычисляет потенциалы (α, β) ,
- которые удовлетворяют условию дополняющей нежесткости.
- Если при этом окажется, что все приведенные стоимости неотрицательны, то решение *x* оптимально.
- В противном случае, в базис вводится переменная x_{ij} , для которой приведенная стоимость отрицательна.

• Метод потенциалов на каждой итерации для текущего базисного решения x вычисляет потенциалы (α, β) ,

- которые удовлетворяют условию дополняющей нежесткости.
- Если при этом окажется, что все приведенные стоимости неотрицательны, то решение х оптимально.
- В противном случае, в базис вводится переменная x_{ij} , для которой приведенная стоимость отрицательна.

- Метод потенциалов на каждой итерации для текущего базисного решения x вычисляет потенциалы (α, β) ,
- которые удовлетворяют условию дополняющей нежесткости.
- Если при этом окажется, что все приведенные стоимости неотрицательны, то решение *x* оптимально.
- В противном случае, в базис вводится переменная x_{ij} , для которой приведенная стоимость отрицательна.

Идея метода потенциалов

- Метод потенциалов на каждой итерации для текущего базисного решения x вычисляет потенциалы (α, β) ,
- которые удовлетворяют условию дополняющей нежесткости.
- Если при этом окажется, что все приведенные стоимости неотрицательны, то решение x оптимально.
- В противном случае, в базис вводится переменная x_{ij} , для которой приведенная стоимость отрицательна.

:	:	÷	:	:	:
:	÷	÷	:	÷	÷

<i>c</i> ₁₁	<i>c</i> ₁₂		c_{1j}		c_{1n}
<i>c</i> ₂₁	c ₂₂		c_{2j}		c_{2n}
÷	÷	:	÷	÷	:
c_{i1}	c _{i2}		Cij		Cin
:	:	:	:	÷	:
C_{m1}	c_{m2}		Cmj		C _{mn}

c_{11}	c_{12}		c_{1j}		c_{1n}
<i>x</i> ₁₁	<i>x</i> ₁₂		x_{1j}		x_{1n}
c_{21}	c_{22}		c_{2j}		c_{2n}
<i>x</i> ₂₁	x_{22}		x_{2j}		x_{2n}
:	i	i	:	i	:
c_{i1}	c_{i2}		c_{ij}		Cin
x_{i1}	x_{i2}		x_{ij}		x_{in}
:	:	:	:	:	:
c_{m1}	c_{m2}		C_{mj}		C_{mn}
x_{m1}	x_{m2}		x_{mj}		x_{mn}

c_{11}	c ₁₂		c_{1j}		c_{1n}	α_1
x_{11}	x_{12}		x_{1j}		x_{1n}	_
$\begin{bmatrix} c_{21} \\ x_{21} \end{bmatrix}$	$\begin{bmatrix} c_{22} \\ x_{22} \end{bmatrix}$		c_{2j} x_{2j}		$\begin{bmatrix} c_{2n} \\ x_{2n} \end{bmatrix}$	α_2
:	:	•	:	•	:	:
$\begin{bmatrix} c_{i1} \\ x_{i1} \end{bmatrix}$	c_{i2} x_{i2}	•••	c_{ij} x_{ij}	•••	c_{in} x_{in}	α_i
:	:	:	:	:	:	:
C_{m1} X_{m1}	c_{m2} x_{m2}		c_{mj} x_{mj}		C_{mn} X_{mn}	α_m

c_{11}	c ₁₂		c_{1j}		c_{1n}	0,1
x_{11}	<i>x</i> ₁₂		x_{1j}		x_{1n}	α_1
c ₂₁	c_{22}		c_{2j}		c_{2n}	α_2
x ₂₁	x ₂₂		x_{2j}		x_{2n}	
:	:	:	:	:	÷	:
c_{i1}	c_{i2}		Cij		c_{in}	α_i
x_{i1}	x_{i2}		x_{ij}		x_{in}	
:	:	:	:	:	:	:
c_{m1}	c_{m2}		c_{mj}		Cmn	
x_{m1}	x_{m2}		X_{mj}		$\overline{x_{mn}}$	α_m
β_1	eta_2		β_i		β_n	_

1						
α_1	c_{1n} \bar{c}_{1n}		c_{1j} \bar{c}_{1j}		c_{12} \bar{c}_{12}	c_{11} \bar{c}_{11}
~1	x_{1n}		x_{1j}		x_{12}	x_{11}
α_2	c_{2n} \bar{c}_{2n}		c_{2j} \bar{c}_{2j}		c_{22} \bar{c}_{22}	c_{21} \bar{c}_{21}
α2	x_{2n}		x_{2j}		x ₂₂	x_{21}
:	÷	÷	:	÷	÷	:
0/.	c_{in} \bar{c}_{in}		c_{ij} \bar{c}_{ij}		c_{i2} \bar{c}_{i2}	c_{i1} \bar{c}_{i1}
α_i	x_{in}		\overline{x}_{ij}		x_{i2}	$\overline{x_{i1}}$
:	:	:	:	:	:	:
_	C_{mn} \bar{C}_{mn}		C_{mj} \bar{C}_{mj}		c_{m2} \bar{c}_{m2}	c_{m1} \bar{c}_{m1}
α_m	x_{mn}	•••	x_{mj}		x_{m2}	x_{m1}
•	β_n		β_i		β_2	β_1

iog cedepo sanagnoro grata

- Существует несколько способов построить начальный допустимый план перевозок x.
- Мы рассмотрим простейший метод северо-западного угла.
- На каждом шаге метод "вычеркивает" один столбец или одну строку транспортной таблицы.
- Пусть $\bar{a} = a, \, \bar{b} = b, \, \text{и} \, x = 0.$
- На шаге $k=1,\ldots,m+n-1$ выбирается клетка (i,j) в левом верхнем (северо-западном) углу невычеркнутой части таблицы и полагается

$$x_{ij} = \min\{\bar{a}_i, \bar{b}_j\}, \quad \bar{a}_i := \bar{a}_i - x_{ij}, \quad \bar{b}_j := \bar{b}_j - x_{ij}.$$

- Существует несколько способов построить начальный допустимый план перевозок x.
- Мы рассмотрим простейший метод северо-западного угла.
- На каждом шаге метод "вычеркивает" один столбец или одну строку транспортной таблицы.
- Пусть $\bar{a} = a, \, \bar{b} = b, \, \text{и} \, x = 0.$
- На шаге $k=1,\ldots,m+n-1$ выбирается клетка (i,j) в левом верхнем (северо-западном) углу невычеркнутой части таблицы и полагается

$$x_{ij} = \min\{\bar{a}_i, \bar{b}_j\}, \quad \bar{a}_i := \bar{a}_i - x_{ij}, \quad \bar{b}_j := \bar{b}_j - x_{ij}.$$

- Существует несколько способов построить начальный допустимый план перевозок x.
- Мы рассмотрим простейший метод северо-западного угла.
- На каждом шаге метод "вычеркивает" один столбец или одну строку транспортной таблицы.
- Пусть $\bar{a} = a, b = b,$ и x = 0.
- На шаге $k=1,\ldots,m+n-1$ выбирается клетка (i,j) в левом верхнем (северо-западном) углу невычеркнутой части таблицы и полагается

$$x_{ij} = \min\{\bar{a}_i, \bar{b}_j\}, \quad \bar{a}_i := \bar{a}_i - x_{ij}, \quad \bar{b}_j := \bar{b}_j - x_{ij}.$$

- Существует несколько способов построить начальный допустимый план перевозок x.
- Мы рассмотрим простейший метод северо-западного угла.
- На каждом шаге метод "вычеркивает" один столбец или одну строку транспортной таблицы.
- Пусть $\bar{a} = a, \, \bar{b} = b, \, \text{и} \, x = 0.$
- На шаге $k=1,\ldots,m+n-1$ выбирается клетка (i,j) в левом верхнем (северо-западном) углу невычеркнутой части таблицы и полагается

$$x_{ij} = \min\{\bar{a}_i, \bar{b}_j\}, \quad \bar{a}_i := \bar{a}_i - x_{ij}, \quad \bar{b}_j := \bar{b}_j - x_{ij}.$$

- Существует несколько способов построить начальный допустимый план перевозок x.
- Мы рассмотрим простейший *метод северо-западного* угла.
- На каждом шаге метод "вычеркивает" один столбец или одну строку транспортной таблицы.
- Пусть $\bar{a} = a, \, \bar{b} = b, \, \text{и} \, x = 0.$
- На шаге $k=1,\ldots,m+n-1$ выбирается клетка (i,j) в левом верхнем (северо-западном) углу невычеркнутой части таблицы и полагается

$$x_{ij} = \min\{\bar{a}_i, \bar{b}_j\}, \quad \bar{a}_i := \bar{a}_i - x_{ij}, \quad \bar{b}_j := \bar{b}_j - x_{ij}.$$

- Существует несколько способов построить начальный допустимый план перевозок x.
- Мы рассмотрим простейший метод северо-западного угла.
- На каждом шаге метод "вычеркивает" один столбец или одну строку транспортной таблицы.
- Пусть $\bar{a} = a, \, \bar{b} = b, \,$ и x = 0.
- На шаге $k=1,\ldots,m+n-1$ выбирается клетка (i,j) в левом верхнем (северо-западном) углу невычеркнутой части таблицы и полагается

$$x_{ij} = \min\{\bar{a}_i, \bar{b}_j\}, \quad \bar{a}_i := \bar{a}_i - x_{ij}, \quad \bar{b}_j := \bar{b}_j - x_{ij}.$$

- Одному (любому) из потенциалов можно присвоить произвольное значение. Например, $\alpha_1 = 0$.
- Если еще не все потенциалы вычислены,
 - находим базисную клетку (i,j), для которой вычислен ровно один потенциал, α_i или β_i ;
 - другой потенциал вычисляем из равенства $\alpha_i + \beta_i = c_{ii}$.
- Когда все потенциалы α_i и β_j определены,
 - для каждой небазисной клетки (i,j) вычисляем приведенную стоимость по правилу:

$$\bar{c}_{ii} = c_{ii} - \alpha_i - \beta_i$$

- Одному (любому) из потенциалов можно присвоить произвольное значение. Например, $\alpha_1 = 0$.
- Если еще не все потенциалы вычислены,
 - находим базисную клетку (i,j), для которой вычислен ровно один потенциал, α_i или β_i ;
 - другой потенциал вычисляем из равенства $\alpha_i + \beta_j = c_{ij}$.
- Когда все потенциалы α_i и β_j определены,
 - для каждой небазисной клетки (i, j) вычисляем приведенную стоимость по правилу:

$$\bar{c}_{ii} = c_{ii} - \alpha_i - \beta_i$$

- Одному (любому) из потенциалов можно присвоить произвольное значение. Например, $\alpha_1 = 0$.
- Если еще не все потенциалы вычислены,
 - находим базисную клетку (i,j), для которой вычислен ровно один потенциал, α_i или β_i ;
 - другой потенциал вычисляем из равенства $\alpha_i + \beta_j = c_{ij}$.
- Когда все потенциалы α_i и β_j определены,
 - для каждой неоазисной клетки (i,j) вычисляем приведенную стоимость по правилу:

$$\bar{c}_{ii} = c_{ii} - \alpha_i - \beta_i ...$$

- Одному (любому) из потенциалов можно присвоить произвольное значение. Например, $\alpha_1 = 0$.
- Если еще не все потенциалы вычислены,
 - находим базисную клетку (i,j), для которой вычислен ровно один потенциал, α_i или β_i ;
 - ullet другой потенциал вычисляем из равенства $lpha_i + eta_j = c_{ij}.$
- Когда все потенциалы α_i и β_j определены,
 - для каждой неоазисной клетки (i,j) вычисляем приведенную стоимость по правилу:

- Одному (любому) из потенциалов можно присвоить произвольное значение. Например, $\alpha_1 = 0$.
- Если еще не все потенциалы вычислены,
 - находим базисную клетку (i,j), для которой вычислен ровно один потенциал, α_i или β_i ;
 - ullet другой потенциал вычисляем из равенства $lpha_i+eta_j=c_{ij}.$
- \bullet Когда все потенциалы α_i и β_j определены,
 - для каждой небазисной клетки (i,j) вычисляем приведенную стоимость по правилу:

$$\bar{c}_{ij} = c_{ij} - \alpha_i - \beta_j.$$

- Одному (любому) из потенциалов можно присвоить произвольное значение. Например, $\alpha_1 = 0$.
- Если еще не все потенциалы вычислены,
 - находим базисную клетку (i,j), для которой вычислен ровно один потенциал, α_i или β_i ;
 - ullet другой потенциал вычисляем из равенства $lpha_i+eta_j=c_{ij}.$
- Когда все потенциалы α_i и β_i определены,
 - для каждой небазисной клетки (i,j) вычисляем приведенную стоимость по правилу:

$$\bar{c}_{ij} = c_{ij} - \alpha_i - \beta_j.$$

ullet Находим клетку (k,l) с минимальной приведенной стоимостью \bar{c}_{kl} .

- Если $\bar{c}_{kl} \geq 0$, то текущий план поставок оптимален и метод заканчивает работу.
- В противном случае находим единственный цикл $(k,l) = (i_0,j_0), (i_0,j_1), (i_1,j_1), \dots, (i_{s-1},j_s), (i_s,j_s) = (i_0,j_0),$ который начинается и заканчивается в клетке (k,l), а все его промежуточные клетки являются базисными.
- Неформально, из клетки $(i_0,j_0)=(k,l)$ мы идем по строке i_0 до базисной клетки (i_0,j_1) , в которой цикл делает изгиб и мы идем уже по столбцу до базисной клетки (i_1,j_1) .
- Далее по строке идем до клетки (i_1, j_2) , и так далее, пока не вернемся в начальную клетку $(i_s, j_s) = (k, l)$.

- Находим клетку (k,l) с минимальной приведенной стоимостью \bar{c}_{kl} .
- Если $\bar{c}_{kl} \ge 0$, то текущий план поставок оптимален и метод заканчивает работу.
- В противном случае находим единственный цикл $(k,l) = (i_0,j_0), (i_0,j_1), (i_1,j_1), \dots, (i_{s-1},j_s), (i_s,j_s) = (i_0,j_0)$ который начинается и заканчивается в клетке (k,l), а все его промежуточные клетки являются базисными.
- Неформально, из клетки $(i_0,j_0)=(k,l)$ мы идем по строке i_0 до базисной клетки (i_0,j_1) , в которой цикл делает изгиб и мы идем уже по столбцу до базисной клетки (i_1,j_1) .
- Далее по строке идем до клетки (i_1, j_2) , и так далее, пока не вернемся в начальную клетку $(i_s, j_s) = (k, l)$.

- Находим клетку (k, l) с минимальной приведенной стоимостью \bar{c}_{kl} .
- Если $\bar{c}_{kl} \ge 0$, то текущий план поставок оптимален и метод заканчивает работу.
- В противном случае находим единственный цикл $(k,l) = (i_0,j_0), (i_0,j_1), (i_1,j_1), \ldots, (i_{s-1},j_s), (i_s,j_s) = (i_0,j_0),$ который начинается и заканчивается в клетке (k,l), а все его промежуточные клетки являются базисными.
- Неформально, из клетки $(i_0,j_0) = (k,l)$ мы идем по строке i_0 до базисной клетки (i_0,j_1) , в которой цикл делает изгиб и мы идем уже по столбцу до базисной клетки (i_1,j_1) .
- Далее по строке идем до клетки (i_1, j_2) , и так далее, пока не вернемся в начальную клетку $(i_s, j_s) = (k, l)$.

Построение нового плана поставок

- Находим клетку (k,l) с минимальной приведенной стоимостью \bar{c}_{kl} .
- Если $\bar{c}_{kl} \ge 0$, то текущий план поставок оптимален и метод заканчивает работу.
- В противном случае находим единственный цикл $(k,l) = (i_0,j_0), (i_0,j_1), (i_1,j_1), \ldots, (i_{s-1},j_s), (i_s,j_s) = (i_0,j_0),$ который начинается и заканчивается в клетке (k,l), а все его промежуточные клетки являются базисными.
- Неформально, из клетки $(i_0,j_0)=(k,l)$ мы идем по строке i_0 до базисной клетки (i_0,j_1) , в которой цикл делает изгиб и мы идем уже по столбцу до базисной клетки (i_1,j_1) .
- Далее по строке идем до клетки (i_1, j_2) , и так далее, пока не вернемся в начальную клетку $(i_s, j_s) = (k, l)$.

Построение нового плана поставок

- Находим клетку (k,l) с минимальной приведенной стоимостью \bar{c}_{kl} .
- Если $\bar{c}_{kl} \ge 0$, то текущий план поставок оптимален и метод заканчивает работу.
- В противном случае находим единственный цикл $(k,l) = (i_0,j_0), (i_0,j_1), (i_1,j_1), \dots, (i_{s-1},j_s), (i_s,j_s) = (i_0,j_0),$ который начинается и заканчивается в клетке (k,l), а все его промежуточные клетки являются базисными.
- Неформально, из клетки $(i_0,j_0)=(k,l)$ мы идем по строке i_0 до базисной клетки (i_0,j_1) , в которой цикл делает изгиб и мы идем уже по столбцу до базисной клетки (i_1,j_1) .
- Далее по строке идем до клетки (i_1, j_2) , и так далее, пока не вернемся в начальную клетку $(i_s, j_s) = (k, l)$.

Построение нового плана поставок

- Находим клетку (k,l) с минимальной приведенной стоимостью \bar{c}_{kl} .
- Если $\bar{c}_{kl} \ge 0$, то текущий план поставок оптимален и метод заканчивает работу.
- В противном случае находим единственный цикл $(k,l)=(i_0,j_0),(i_0,j_1),(i_1,j_1),\ldots,(i_{s-1},j_s),(i_s,j_s)=(i_0,j_0),$ который начинается и заканчивается в клетке (k,l), а все его промежуточные клетки являются базисными.
- Затем вычисляем минимальное значение среди величин поставок в нечетных (с нечетным индексом) клетках цикла $\epsilon = \min\{x_{i_0,j_1}, x_{i_1,j_2}, \dots, x_{i_{s-1},j_s}\}$
- и уменьшаем на ϵ поставки в нечетных клетках и увеличиваем на ϵ поставки в четных клетках:

$$x_{i_{t-1},j_t} := x_{i_{t-1},j_t} - \epsilon, \quad x_{i_t,j_t} := x_{i_t,j_t} + \epsilon, \quad t = 1,\dots,s.$$

- Находим клетку (k,l) с минимальной приведенной стоимостью \bar{c}_{kl} .
- Если $\bar{c}_{kl} \ge 0$, то текущий план поставок оптимален и метод заканчивает работу.
- В противном случае находим единственный цикл $(k,l) = (i_0,j_0), (i_0,j_1), (i_1,j_1), \dots, (i_{s-1},j_s), (i_s,j_s) = (i_0,j_0),$ который начинается и заканчивается в клетке (k,l), а все его промежуточные клетки являются базисными.
- Затем вычисляем минимальное значение среди величин поставок в нечетных (с нечетным индексом) клетках цикла $\epsilon = \min\{x_{i_0,j_1}, x_{i_1,j_2}, \dots, x_{i_{s-1},j_s}\}$
- ullet и уменьшаем на ϵ поставки в нечетных клетках и увеличиваем на ϵ поставки в четных клетках:

$$x_{i_{t-1},j_t} := x_{i_{t-1},j_t} - \epsilon, \quad x_{i_t,j_t} := x_{i_t,j_t} + \epsilon, \quad t = 1,\ldots,s.$$

- 1 Транспортная задача
 - ЛП формулировка
 - Метод потенциалов
 - Числовой пример

2 Агрегированное планирование

Исходные данные

- Фирма, предоставляющая в аренду автомобили, обнаружила дисбаланс в распределении автомобилей.
- В городах 4,5,6 автомобилей не хватает:
- Расстояния между городами следующие

120	70	350
156	240	75
225	160	145

- Затраты по перегону автомобиля из одного города в

Исходные данные

- Фирма, предоставляющая в аренду автомобили, обнаружила дисбаланс в распределении автомобилей.
- В городах 1,2 и 3 имеется избыточное количество автомобилей:

- В городах 4,5,6 автомобилей не хватает:
- Расстояния между городами следующие

120	70	350
156	240	75
225	160	145

- Затраты по перегону автомобиля из одного города в

Исходные данные

- Фирма, предоставляющая в аренду автомобили, обнаружила дисбаланс в распределении автомобилей.
- В городах 1,2 и 3 имеется избыточное количество автомобилей:
 - 26 B городе 1, 43 B городе 2, 31 B городе 3.
- В городах 4,5,6 автомобилей не хватает:
- Расстояния между городами следующие

120	70	350
156	240	75
225	160	145

- Затраты по перегону автомобиля из одного города в

- Фирма, предоставляющая в аренду автомобили, обнаружила дисбаланс в распределении автомобилей.
- В городах 1,2 и 3 имеется избыточное количество автомобилей:
 - 26 в городе 1, 43 в городе 2, 31 в городе 3.
- В городах 4,5,6 автомобилей не хватает:
- Расстояния между городами следующие

120	70	350
156	240	75
225	160	145

- Затраты по перегону автомобиля из одного города в другой пропорциональны расстоянию между городами.
- Нужно найти самый экономный план передислокации автомобилей.

- Фирма, предоставляющая в аренду автомобили, обнаружила дисбаланс в распределении автомобилей.
- В городах 1,2 и 3 имеется избыточное количество автомобилей:
 - 26 в городе 1, 43 в городе 2, 31 в городе 3.
- В городах 4,5,6 автомобилей не хватает:
- Расстояния между городами следующие

120	70	350
156	240	75
225	160	145

- Затраты по перегону автомобиля из одного города в
- Нужно найти самый экономный план передислокации

- Фирма, предоставляющая в аренду автомобили, обнаружила дисбаланс в распределении автомобилей.
- В городах 1,2 и 3 имеется избыточное количество автомобилей:
 - \bullet 26 в городе 1, 43 в городе 2, 31 в городе 3.
- В городах 4,5,6 автомобилей не хватает:

• 32 — в городе 4. 28

• Расстояния между городами следующие

120	70	350
156	240	75
225	160	145

- Затраты по перегону автомобиля из одного города в другой пропорциональны расстоянию между городами.
- Нужно найти самый экономный план передислокации автомобилей.

- Фирма, предоставляющая в аренду автомобили, обнаружила дисбаланс в распределении автомобилей.
- В городах 1,2 и 3 имеется избыточное количество автомобилей:
 - 26 в городе 1, 43 в городе 2, 31 в городе 3.
- В городах 4,5,6 автомобилей не хватает:
 - 32 B городе 4, 28 B городе 5, 26 B городе 6.
- Расстояния между городами следующие

120	70	350
156	240	75
225	160	145

- Затраты по перегону автомобиля из одного города в
- Нужно найти самый экономный план передислокации

- Фирма, предоставляющая в аренду автомобили, обнаружила дисбаланс в распределении автомобилей.
- В городах 1,2 и 3 имеется избыточное количество автомобилей:
 - 26 в городе 1, 43 в городе 2, 31 в городе 3.
- В городах 4,5,6 автомобилей не хватает:
 - 32 в городе 4, 28 в городе 5, 26 в городе 6.
- Расстояния между городами следующие

120	70	350
156	240	75
225	160	145

- Затраты по перегону автомобиля из одного города в
- Нужно найти самый экономный план передислокации

- Фирма, предоставляющая в аренду автомобили, обнаружила дисбаланс в распределении автомобилей.
- В городах 1,2 и 3 имеется избыточное количество автомобилей:
 - \bullet 26 в городе 1, 43 в городе 2, 31 в городе 3.
- В городах 4,5,6 автомобилей не хватает:
 - 32 в городе 4, 28 в городе 5, 26 в городе 6.
- Расстояния между городами следующие

- Затраты по перегону автомобиля из одного города в другой пропорциональны расстоянию между городами.
- Нужно найти самый экономный план передислокации автомобилей.

- Фирма, предоставляющая в аренду автомобили, обнаружила дисбаланс в распределении автомобилей.
- В городах 1,2 и 3 имеется избыточное количество автомобилей:
 - 26 в городе 1, 43 в городе 2, 31 в городе 3.
- В городах 4,5,6 автомобилей не хватает:
 - 32 в городе 4, 28 в городе 5, 26 в городе 6.
- Расстояния между городами следующие

	4	5	6
1	120	70	350
2	156	240	75
3	225	160	145

- Затраты по перегону автомобиля из одного города в
- Нужно найти самый экономный план передислокации

- Фирма, предоставляющая в аренду автомобили, обнаружила дисбаланс в распределении автомобилей.
- В городах 1,2 и 3 имеется избыточное количество автомобилей:
 - \bullet 26 в городе 1, 43 в городе 2, 31 в городе 3.
- В городах 4,5,6 автомобилей не хватает:
 - 32 в городе 4, 28 в городе 5, 26 в городе 6.
- Расстояния между городами следующие

	4	5	6
1	120	70	350
2	156	240	75
3	225	160	145

- Затраты по перегону автомобиля из одного города в другой пропорциональны расстоянию между городами.
- Нужно найти самый экономный план передислокации автомобилей.

- Фирма, предоставляющая в аренду автомобили, обнаружила дисбаланс в распределении автомобилей.
- В городах 1,2 и 3 имеется избыточное количество автомобилей:
 - 26 в городе 1, 43 в городе 2, 31 в городе 3.
- В городах 4,5,6 автомобилей не хватает:
 - 32 в городе 4, 28 в городе 5, 26 в городе 6.
- Расстояния между городами следующие

	4	5	6
1	120	70	350
2	156	240	75
3	225	160	145

- Затраты по перегону автомобиля из одного города в другой пропорциональны расстоянию между городами.
- Нужно найти самый экономный план передислокации автомобилей.

120	70	350
156	240	75
225	160	145

- больше спроса 32 + 28 + 26 = 86,
- то вводим фиктивного потребителя со спросом 14.

120	70	350	
156	240	75	
225	160	145	

- больше спроса 32 + 28 + 26 = 86,
- то вводим фиктивного потребителя со спросом 14.

26	120	70	350
	156	240	75
	225	160	145

- Поскольку суммарное предложение 26 + 43 + 31 = 100
- больше спроса 32 + 28 + 26 = 86,
- то вводим фиктивного потребителя со спросом 14.

26	120	70	350
43	156	240	75
	225	160	145

- Поскольку суммарное предложение 26 + 43 + 31 = 100
- больше спроса 32 + 28 + 26 = 86,
- то вводим фиктивного потребителя со спросом 14.

26	120	70	350
43	156	240	75
31	225	160	145

- Поскольку суммарное предложение 26 + 43 + 31 = 100
- больше спроса 32 + 28 + 26 = 86,
- то вводим фиктивного потребителя со спросом 14.

Мы имеем транспортную задачу, в которой поставщиками

(автомобилей) являются города 1,2 и 3, а потребителями города 5,6 и 7.

26	120	70	350	
43	156	240	75	
31	225	160	145	

- Поскольку суммарное предложение 26 + 43 + 31 = 100
- больше спроса 32 + 28 + 26 = 86,
- то вводим фиктивного потребителя со спросом 14.

Мы имеем транспортную задачу, в которой поставщиками (автомобилей) являются города 1,2 и 3, а потребителями города 5,6 и 7.

> 32 120 70 350 26 156 240 75 43 225 160 145 31

- Поскольку суммарное предложение 26 + 43 + 31 = 100
- больше спроса 32 + 28 + 26 = 86,
- то вводим фиктивного потребителя со спросом 14.

Построение начального плана

	32	28	
26	120	70	350
43	156	240	75
31	225	160	145

- Поскольку суммарное предложение 26 + 43 + 31 = 100
- больше спроса 32 + 28 + 26 = 86,
- то вводим фиктивного потребителя со спросом 14.

Построение начального плана

	32	28	26
26	120	70	350
43	156	240	75
31	225	160	145

- Поскольку суммарное предложение 26 + 43 + 31 = 100
- больше спроса 32 + 28 + 26 = 86,
- то вводим фиктивного потребителя со спросом 14.

	32	28	26
26	120	70	350
43	156	240	75
31	225	160	145

- Поскольку суммарное предложение 26 + 43 + 31 = 100
- больше спроса 32 + 28 + 26 = 86,
- то вводим фиктивного потребителя со спросом 14.

	32	28	26	14
26	120	70	350	0
43	156	240	75	0
31	225	160	145	0

- Поскольку суммарное предложение 26 + 43 + 31 = 100
- больше спроса 32 + 28 + 26 = 86.
- то вводим фиктивного потребителя со спросом 14.

	32	28	26	14
26	120	70	350	0
43	156	240	75	0
31	225	160	145	0

	32	28	26	14
26	120	70	350	0
43	156	240	75	0
31	225	160	145	0

$$min{26, 32} = 26$$

Построение начального плана

	32	28	26	14
26	120 26	70	350	0
43	156	240	75	0
31	225	160	145	0

$$\min\{26, 32\} = 26$$

Построение начального плана

	32	28	26	14
0	120	70	350	0
U	26			
43	156	240	75	0
73				
31	225	160	145	0
31				

$$\min\{26, 32\} = 26$$

Построение начального плана

	6	28	26	14
0	120	70	350	0
U	26			
43	156	240	75	0
73				
31	225	160	145	0
31				

$$\min\{26, 32\} = 26$$

Построение начального плана

	6	28	26	14	
0	120	70	350	0	
	26				
43	156	240	75	0	
	225	160	1.45	0	
31	225	160	145	0	

$$\min\{26, 32\} = 26$$

	6	28	26	14	
0_	120	70	350	0	
	26				
43	156	240	75	0	
43	•				
21	225	160	145	0	
31					

$$min{43,6} = 6$$

	6	28	26	14	
0	120	70	350	0	
	26				
43	156	240	75	0	
43	6				
21	225	160	145	0	
31					

$$min{43,6} = 6$$

Построение начального плана

	6	28	26	14	
0	120	70	350	0	
	26				
37	156	240	75	0	
31	6				
31	225	160	145	0	
31					

$$min{43,6} = 6$$

	0	28	26	14
0_	120	70	350	0
	26			
37	156	240	75	0
31	6			
21	225	160	145	0
31				

$$min{43,6} = 6$$

	0	28	26	14
0	120	70	350	0
	26			
37	156	240	75	0
	6			
31	225	160	145	0
		-	1	

$$min{43,6} = 6$$

	0	28	26	14
0	120	70	350	0
	26			
37	156	240	75	0
31	6	•		
31	225	160	145	0
		•		

$$min{37,28} = 28$$

	0	28	26	14
0	120	70	350	0
	26			
37	156	240	75	0
31	6	28		
31	225	160	145	0

$$min{37, 28} = 28$$

	0	28	26	14	
0_	120	70	350	0	
	26				
9	156	240	75	0	
,	6	28			
31	225	160	145	0	
			1		

$$min{37, 28} = 28$$

	0	0	26	14
0	120	70	350	0
	26			
9	156	240	75	0
9	6	28		
31	225	160	145	0
			1	

$$min{37, 28} = 28$$

Транспортная задача Агрегир. планирование

	0	0	26	14
0	120	70	350	0
	26			
9	156	240	75	0
,	6	28		
31	225	160	145	0
			1	

$$min{37, 28} = 28$$

	0	0	26	14
0	120	70	350	0
	26			
9	156	240	75	0
9	6	28	•	
31	225	160	145	0
			'	

$$min{9,26} = 9$$

	0	0	26	14	
0	120	70	350	0	
	26				_
9	156	240	75	0	
9	6	28	9		
31	225	160	145	0	

$$min\{9,26\} = 9$$

	0	0	26	14
0	120	70	350	0
	26			
0	156	240	75	0
U	6	28	9	
31	225	160	145	0

$$min{9, 26} = 9$$

Транспортная задача Агрегир. планирование

	0	0	17	14
0	120	70	350	0
	26			
0	156	240	75	0
U	6	28	9	
31	225	160	145	0

$$min\{9, 26\} = 9$$

	0	0	17	14
0	120	70	350	0
	26			
0	156	240	75	0
	6	28	9	
31	225	160	145	0

$$min{9, 26} = 9$$

	0	0	17	14	
0_	120	70	350	0	
	26				
0	156	240	75	0	
	6	28	9		
31	225	160	145	0	

$$min{31, 17} = 17$$

	0	0	17	14	
0	120	70	350	0	
	26				_
0_	156	240	75	0	
	6	28	9		_
31	225	160	145	0	

$$min{31, 17} = 17$$

	0	0	17	14
0_	120	70	350	0
	26			
0	156	240	75	0
	6	28	9	
14	225	160	145	0
			17	

$$min{31, 17} = 17$$

	0	0	0	14
0	120	70	350	0
	26			
0	156	240	75	0
	6	28	9	
14	225	160	145	0

$$min{31, 17} = 17$$

	0	0	0	14	
0_	120	70	350	0	
	26				
0	156	240	75	0	
	6	28	9		
14	225	160	145	0	

$$min{31, 17} = 17$$

	0	0	0	14	
0_	120	70	350	0	
	26				_
0	156	240	75	0	
	6	28	9		_
14	225	160	145	0	

$$\min\{14, 14\} = 14$$

	0	0	0	14	
0	120	70	350	0	
	26				
0	156	240	75	0	
	6	28	9		
14	225	160	145	0	
			17	14	

$$\min\{14, 14\} = 14$$

	0	0	0	14	
0_	120	70	350	0	
	26				_
0	156	240	75	0	
	6	28	9		
0	225	160	145	14	

$$\min\{14,14\} = 14$$

	0	0	0	0	
0_	120	70	350	0	
	26				
0	156	240	75	0	
	6	28	9		
0	225	160	145	14	

$$\min\{14,14\} = 14$$

	0	0	0	0	
0_	120	70	350	0	
	26				
0	156	240	75	0	
	6	28	9		
0	225	160	145	14	

$$\min\{14,14\} = 14$$

120		70		350		0	
2	6						
156		240		75		0	
6	6	2	8	و)		
225		160		145		0	
				1	7	1	4

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

120		70		350		0		
2	6							
156		240		75		0		
(5	2	8	Ģ)			
225		160		145		0		
				1	7	1	4	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

120		70		350		0		0
2	6							
156		240		75		0		
6	6	2	8	ģ)			
225		160		145		0		
				1	7	1	4	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_1 + \beta_1 = 120 \implies \beta_1 = 120 - 0 = 120$$

120		70		350		0		0
2	6							
156		240		75		0		
(5	2	8	Ì)			
225		160		145		0		
				1	7	1	4	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_1 + \beta_1 = 120 \implies \beta_1 = 120 - 0 = 120$$

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_1 + \beta_1 = 120 \implies \beta_1 = 120 - 0 = 120$$

120	70	350	0	
26				'
156	240	75	0	
6	28	9		
225	160	145	0	
		17	14	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_1 = 156 \implies \alpha_2 = 156 - 120 = 36$$

120 26	70	350	0	0
156	240	75	0	36
6	28	9		30
225	160	145	0	
		17	14	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_1 = 156 \implies \alpha_2 = 156 - 120 = 36$$

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_2 = 240 \implies \beta_2 = 240 - 36 = 204$$

120	70	350	0	\bigcap_{0}
26				
156	240	75	0	36
6	28	9		30
225	160	145	0	
		17	14	
120	204			

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_2 = 240 \implies \beta_2 = 240 - 36 = 204$$

120	70	350	0	٦
	70	330	0	0
26				
156	240	75	0	
6	28	9		36
U	20	7		4
225	160	145	0	
		17	14	
120	204			

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_3 = 75 \implies \beta_3 = 75 - 36 = 39$$

120	70	350	0	
26				0
156	240	75	0	26
6	28	9		36
225	160	145	0	
		17	14	
120	204	39		

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_3 = 75 \implies \beta_3 = 75 - 36 = 39$$

120	70	350	0	
				0
26				
156	240	75	0	
130	240	7.5	0	36
6	28	9		50
225	160	145	0	
223	100	113		
		17	14	
120	204	39		

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_3 + \beta_3 = 145 \implies \alpha_3 = 145 - 39 = 106$$

120	70	350	0	0
26				
156	240	75	0	36
6	28	9		30
225	160	145	0	106
		17	14	
120	204	39		

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_3 + \beta_3 = 145 \implies \alpha_3 = 145 - 39 = 106$$

120	70	350	0	0
26				
156	240	75	0	36
6	28	9		
225	160	145	0	106
		17	14] 100
120	204	39		

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_3 + \beta_4 = 0 \implies \beta_4 = 0 - 106 = -106$$

0		0		350		70		120
0							6	2
36		0		75		240		156
30)	Ģ	8	2	6	
106		0		145		160		225
100	4	1	7	1				
	.06	-1	9	3)4	20	20	12

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_3 + \beta_4 = 0 \implies \beta_4 = 0 - 106 = -106$$

120	70	350	0	
26				0
156	240	75	0	26
6	28	9		36
225	160	145	0	106
		17	14] 100
120	204	39	-106	

Для каждой небазисной клетки вычисляем приведенную стоимость:

		0		350		70		120
0							6	2
26		0		75		240		156
36)	Ģ	28	2	5	
106		0		145		160		225
100	4	1	7	1				
	106	—]	9	3	04	20	20	12

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{12} = 70 - 0 - 204 = -134$

120	70	350	0	
26				0
156	240	75	0	26
6	28	9		36
225	160	145	0	106
		17	14	106
120	204	39	-106	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{12} = 70 - 0 - 204 = -134$

120		70	-134	350		0		
20	6		,		,			0
156		240		75		0		26
6	5	2	8	و	9			36
225		160		145		0		106
				1	7	1	4	106
12	20	20)4	3	9	-1	.06	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{12} = 70 - 0 - 204 = -134$

	0	350	70 -134	120
0				26
26	0	75	240	156
36		9	28	6
106	0	145	160	225
106	14	17		
	-106	39	204	120

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{13} = 350 - 0 - 39 = 311$

0		0	311	350	-134	70		120
U							6	2
36		0		75		240		156
30)	Ģ	8	2	5	
106		0		145		160		225
100	4	1	7	1				
	106	-1	9	3)4	20	20	12

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{13} = 350 - 0 - 39 = 311$

		0	311	350	-134	70		120
0					J			
							6	2
		0		75		240		156
36	_		\		.8	2	J <u>C</u>	
	T		,	Ģ	, O		5	<u>'</u>
		0		145		160		225
106	1.4	1	7	1	J		J	
	14	1	/	1				
	106	— 1	9	3	04	20	20	1:

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{14} = 0 - 0 - (-106) = 106$

0	106	0	311	350	-134	70		120
							6	2
36		0		75		240		156
30)	Ģ	8	2	5	
106		0		145		160		225
100	4	1	7	1				
	106	-1	9	3)4	20	20	1:

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{14} = 0 - 0 - (-106) = 106$

0	106	0	311	350	-134	70		120
							6	2
26		0		75		240		156
36)	Ģ	8	2	6	
100		0		145		160		225
106	4	1	7	1	-			
	106	-1	9	3	04	20	20	12

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{24} = 0 - 36 - (-106) = 70$

0	106	0	311	350	-134	70		120
							6	2
26	70	0		75		240		156
36)	٥	8	2	5	
100		0		145		160		225
106	4	1	7	1				
	06	-1	9	3)4	20	20	12

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{24} = 0 - 36 - (-106) = 70$

120		70	-134	350	311	0	106	0
2	6							U
156		240		75		0	70	36
	5	2	8	Ģ)			30
225		160		145		0		106
				1	7	1	4	106
12	20	20)4	3	9	-1	.06	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{31} = 225 - 106 - 120 = -1$

120		70	-134	350	311	0	106	0
2	6							U
156		240		75		0	70	36
(5	2	8	Ģ)			30
225	-1	160		145		0		106
				1	7	1	4	106
12	20	20)4	3	9	-1	.06	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{31} = 225 - 106 - 120 = -1$

120		70	-134	350	311	0	106	0
2	6							U
156		240		75		0	70	26
	5	2	8	Ģ)			36
225	-1	160		145		0		106
				1	7	1	4	106
12	20	20)4	3	9	-1	.06	

Для каждой небазисной клетки вычисляем приведенную $\bar{c}_{32} = 160 - 106 - 204 = -150$ стоимость:

Транспортная задача Агрегир, планирование

120		70	-134	350	311	0	106	0
2	6							0
156		240		75		0	70	36
	5	2	8	Ģ	9			30
225	-1	160	-150	145		0		106
				1	7	1	4	100
12	20	20)4	3	9	-1	106	

Итерация 1: вычисление приведенных стоимостей

Для каждой небазисной клетки вычисляем приведенную $\bar{c}_{32} = 160 - 106 - 204 = -150$ стоимость:

120		70	-134	350	311	0	106
2	6						
156		240		75		0	70
6	6 28		8	Ģ)		
225	-1	160	-150	145		0	
				1	7	1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (3,2).
- Начиная с клетки (3,2), строим цикл: $(3,2) \to (3,3) \to (2,3) \to (2,2) \to (3,2)$.

120		70	-134	350	311	0	106
2	6						
156		240		75		0	70
(6 28		8	Ģ)		
225	-1	160	-150	145		0	
				1	7	1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (3,2).
- Начиная с клетки (3,2), строим цикл: $(3,2) \to (3,3) \to (2,3) \to (2,2) \to (3,2)$.

120		70	-134	350	311	0	106
2	6						
156		240		75		0	70
6	5	2	8	Ģ)		
225	-1	160	-150	145		0	
				1	7	1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (3,2).
- Начиная с клетки (3,2), строим цикл: $(3,2) \to (3,3) \to (2,3) \to (2,2) \to (3,2)$.

120		70	-134	350	311	0	106
2	6						
156		240		75		0	70
(6		28)		
225	-1	160	-150	145		0	
			+	1	7	1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (3,2).
- Начиная с клетки (3,2), строим цикл: $(3,2) \rightarrow (3,3) \rightarrow (2,3) \rightarrow (2,2) \rightarrow (3,2)$.

Транспортная задача Агрегир, планирование

120		70	-134	350	311	0	106
2	6						
156		240		75		0	70
6	5	2	8	و)		
225	-1	160	-150	145		0	
			+	1	7	1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (3,2).
- Начиная с клетки (3,2), строим цикл: $(3,2) \rightarrow (3,3) \rightarrow (2,3) \rightarrow (2,2) \rightarrow (3,2).$

120		70	-134	350	311	0	106
2	6						
156		240		75		0	70
(5	2	8	Ģ	+		
225	-1	160	-150	145		0	
			+	1	7	1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (3,2).
- Начиная с клетки (3,2), строим цикл: $(3,2) \to (3,3) \to (2,3) \to (2,2) \to (3,2)$.

120		70	-134	350	311	0	106
2	6						
156		240		75		0	70
(5	2	8	Ģ	+		
225	-1	160	-150	145		0	
			+	1	7	1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (3,2).
- Начиная с клетки (3,2), строим цикл: $(3,2) \to (3,3) \to (2,3) \to (2,2) \to (3,2)$.

120		70	-134	350	311	0	106
2	6						
156		240		75		0	70
6	5	2	8	Ģ	+		
225	-1	160	-150	145		0	
			+	1	7	1	4

- Среди клеток, помеченных знаком минус выбираем клетку (3,3) с минимальным значением поставки $\min\{17,28\}=17$.
- Прибавляем 17 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 17 от поставок в клетках цикла, помеченных знаком минус.

120		70	-134	350	311	0	106
2	6						
156		240		75		0	70
6	5	2	8	Ģ	+		
225	-1	160	-150	145		0	
			+	1	7	1	4

- Среди клеток, помеченных знаком минус выбираем клетку (3,3) с минимальным значением поставки $\min\{17,28\}=17$.
- Прибавляем 17 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 17 от поставок в клетках цикла, помеченных знаком минус.

120		70	<u>_</u> 1	134	350	3	311	0	106
2	6								
156		240			75			0	70
6	5	2	8		Ģ)	+		
225	-1	160	- :	150	145			0	
		1	7	+	1	7	¹ —	1	4

- Среди клеток, помеченных знаком минус выбираем клетку (3,3) с минимальным значением поставки $\min\{17,28\}=17$.
- Прибавляем 17 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 17 от поставок в клетках цикла, помеченных знаком минус.

120		70	-134	350	311	0	106
2	6						
156		240		75		0	70
(5	2	8	٥	+		
225	-1	160	-150	145		0	
		1	7 +	()	1	4

- Среди клеток, помеченных знаком минус выбираем клетку (3,3) с минимальным значением поставки $\min\{17,28\}=17$.
- Прибавляем 17 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 17 от поставок в клетках цикла, помеченных знаком минус.

120		70	-134	350	311	0	106
2	6						
156		240		75		0	70
(5	2	8	2	+		
225	-1	160	-150	145		0	
		1	7 +			1	4

- Среди клеток, помеченных знаком минус выбираем клетку (3,3) с минимальным значением поставки $\min\{17,28\}=17$.
- Прибавляем 17 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 17 от поставок в клетках цикла, помеченных знаком минус.

120		70	_1	134	350	3	311	0	106
2	6								
156		240			75			0	70
(5	1	1		2	6	+		
225	-1	160	<u> </u>	150	145			0	
		1	7 -	+				1	4

- Среди клеток, помеченных знаком минус выбираем клетку (3,3) с минимальным значением поставки $\min\{17,28\}=17$.
- Прибавляем 17 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 17 от поставок в клетках цикла, помеченных знаком минус.

120		70	-134	350	311	0	106
2	6						
156		240		75		0	70
(5	1	1	2	+ 		
225	-1	160	-150	145		0	
		1	7 +			1	4

- Среди клеток, помеченных знаком минус выбираем клетку (3,3) с минимальным значением поставки $\min\{17,28\}=17$.
- Прибавляем 17 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 17 от поставок в клетках цикла, помеченных знаком минус.

120		70		350		0	
2	6						
156		240		75		0	
6	5	1	1	2	6		
225		160		145		0	
		1	7			1	4

Итерация 1 завершена.

120	70	350	0
26			
156	240	75	0
6	11	26	
225	160	145	0
	17		14

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

120		70		350		0		
2	6							'
156		240		75		0		
(5	1	1	2	6			
225		160		145		0		
		1	7			1	4	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

120		70		350		0		0
2	6							
156		240		75		0		
6	6	1	1	2	6			
225		160		145		0		
		1	7			1	4	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

120		70		350		0		0
2	6							
156		240		75		0		
(5	1	1	2	6			
225		160		145		0		
		1	7			1	4	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_1 + \beta_1 = 120 \implies \beta_1 = 120 - 0 = 120$$

120		70		350		0		(
2	6							,
156		240		75		0		
6	5	1	1	2	6			
225		160		145		0		
		1	7			1	4	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_1 + \beta_1 = 120 \implies \beta_1 = 120 - 0 = 120$$

120	70	350	0	$\left[\right]_{0}$
26				"
156	240	75	0	
6	11	26		
225	160	145	0	
	17		14	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_1 = 156 \implies \alpha_2 = 156 - 120 = 36$$

120	70	350	0	$\left[\begin{array}{c} 0 \end{array} \right]$
26] "
156	240	75	0	36
6	11	26		
225	160	145	0	
	17		14	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_1 = 156 \implies \alpha_2 = 156 - 120 = 36$$

120	70	350	0	0
26				
156	240	75	0	26
6	11	26		36
225	160	145	0	
	17		14	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_2 = 240 \implies \beta_2 = 240 - 36 = 204$$

120	70	350	0	0
26				
156	240	75	0	36
6	11	26] 30
225	160	145	0	
	17		14	
120	204			

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_2 = 240 \implies \beta_2 = 240 - 36 = 204$$

				_
120	70	350	0	0
26				
156	240	75	0	36
6	11	26		30
225	160	145	0	
	17		14	
120	204			

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_3 = 75 \implies \beta_3 = 75 - 36 = 39$$

120	70	350	0	
26				0
156	240	75	0	36
6	11	26		30
225	160	145	0	
	17		14	
120	204	39		

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_3 = 75 \implies \beta_3 = 75 - 36 = 39$$

120	70	350	0	٦
	70	330	U	0
26				
156	240	75	0]
6	11	26		36
	11	20		4
225	160	145	0	
	17		14	
120	204	39		_

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_3 + \beta_2 = 160 \implies \alpha_3 = 160 - 204 = -44$$

120	70	350	0	0
26				
156	240	75	0	26
6	11	26		36
225	160	145	0	144
	17		14	
120	204	39		

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_3 + \beta_2 = 160 \implies \alpha_3 = 160 - 204 = -44$$

120	70	350	0	0
26				
156	240	75	0	36
6	11	26		
225	160	145	0	_44
	17		14	_44
120	204	39		

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_3 + \beta_4 = 0 \implies \beta_4 = 0 - (-44) = 44$$

120	70	350	0	
26				0
156	240	75	0	36
6	11	26		30
225	160	145	0	_44
	17		14	
120	204	39	44	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_3 + \beta_4 = 0 \implies \beta_4 = 0 - (-44) = 44$$

120	70	350	0	
26				0
156	240	75	0	7
6	11	26		36
225	160	145	0	144
	17		14	
120	204	39	44	

Для каждой небазисной клетки вычисляем приведенную стоимость:

120	70	350	0	
26				0
156	240	75	0	7
6	11	26		36
225	160	145	0	144
	17		14	
120	204	39	44	

Для каждой небазисной клетки вычисляем приведенную стоимость:

120	70	350	0	
26				0
156	240	75	0	26
6	11	26		36
225	160	145	0	144
	17		14	
120	204	39	44	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{12} = 70 - 0 - 204 = -134$

120		70	-134	350		0		0
26)							U
156		240		75		0		26
6		1	1	2	6			36
225		160		145		0		4.4
		1	7			1	4	-44
120	0	20)4	3	9	4	4	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{12} = 70 - 0 - 204 = -134$

120	70 -134	350	0	
26				0
156	240	75	0	26
6	11	26		36
225	160	145	0	44
	17		14	_44
120	204	39	44	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{13} = 350 - 0 - 39 = 311$

				_
120	70 -134	4 350 311	0	
26				0
156	240	75	0	7
6	11	26		36
225	160	145	0]
	17		14	
120	204	39	44	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{13} = 350 - 0 - 39 = 311$

120	70 -134	350 311	0	0
26				U
156	240	75	0	26
6	11	26		36
225	160	145	0	4.4
	17	_	14	_44
120	204	39	44	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{14} = 0 - 0 - 44 = -44$

120		70	-134	350	311	0	-44	0
2	6							0
156		240		75		0		26
(5	1	1	2	6			36
225		160		145		0		4.4
		1	7			1	4	-44
12	20	20)4	3	9	4	4	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{14} = 0 - 0 - 44 = -44$

120		70	-134	350	311	0	-44	0
26	5							0
156		240		75		0		36
6		1	1	2	6			30
225		160		145		0		11
		1	7			1	4	-44
12	0	20)4	3	9	4	4	

Для каждой небазисной клетки вычисляем приведенную $\bar{c}_{24} = 0 - 36 - 44 = -80$ стоимость:

120		70	-134	350	311	0	-44	
2	6							0
156		240		75		0	-80	26
(5	1	1	2	6			36
225		160		145		0		4.4
		1	7			1	4	-44
12	20	20)4	3	9	4	4	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{24} = 0 - 36 - 44 = -80$

12	20		70	-134	350	311	0	-44	
-			, ,			011]	0
	2	6							
15	66		240		75		0	-80	
		J		J					36
	(5	1	1	2	6			
22	25		160		145		0		
		J		J				J	-44
			1	7			1	4	
	13	20	20)4	3	9	4	4	
		20	1	7 04	3	9	1	4	-44

Для каждой небазисной клетки вычисляем приведенную $\bar{c}_{31} = 225 - (-44) - 120 = 149$ стоимость:

120		70	-134	350	311	0	-44	0
2	6							U
156		240		75		0	-80	36
(5	1	1	2	6			30
225	149	160		145		0		4.4
		1	7			1	4	-44
12	20	20)4	3	9	4	4	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{31} = 225 - (-44) - 120 = 149$

120		70	-134	350	311	0	-44	0
2	6							U
156		240		75		0	-80	36
(5	1	1	2	6			30
225	149	160		145		0		4.4
		1	7			1	4	-44
12	20	20)4	3	9	4	4	

Для каждой небазисной клетки вычисляем приведенную $\bar{c}_{33} = 145 - (-44) - 39 = 150$ стоимость:

120		70	-134	350	311	0	-44	0
2	6							0
156		240		75		0	-80	26
(5	1	1	2	6			36
225	149	160		145	150	0		4.4
		1	7			1	4	-44
12	20	20)4	3	9	4	4	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{33} = 145 - (-44) - 39 = 150$

120		70	-134	350	311	0	-44
2	26						
156		240		75		0	-80
6	5	11		26			
225 149		160		145 150		0	
,		17				1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (1,2).
- Начиная с клетки (1,2), строим цикл: $(1,2) \to (1,1) \to (2,1) \to (2,2) \to (1,2)$.

120		70	-134	350	311	0	-44
26							
156		240		75		0	-80
(5	11		2	6		
225 149		160		145 150		0	
		17				1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (1,2).
- Начиная с клетки (1,2), строим цикл: $(1,2) \rightarrow (1,1) \rightarrow (2,1) \rightarrow (2,2) \rightarrow (1,2)$.

120		70	-134	350	311	0	-44
26							
156		240		75		0	-80
6	5	11		2	6		
225 149		160		145 150		0	
		17				1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (1,2).
- Начиная с клетки (1,2), строим цикл: $(1,2) \to (1,1) \to (2,1) \to (2,2) \to (1,2)$.

120		70	-134	350	311	0	-44
2	6		+				
156		240		75		0	-80
(6	1	1	2	6		
225 149		160		145 150		0	
		17				1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (1,2).
- Начиная с клетки (1,2), строим цикл: $(1,2) \rightarrow (1,1) \rightarrow (2,1) \rightarrow (2,2) \rightarrow (1,2)$.

120		70	-134	350	311	0	-44
2	6		—+ 				
156		240		75		0	-80
6	5	11		2	6		
225 149		160		145 150		0	
		17				1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (1,2).
- Начиная с клетки (1,2), строим цикл: $(1,2) \rightarrow (1,1) \rightarrow (2,1) \rightarrow (2,2) \rightarrow (1,2)$.

120		70	-134	350	311	0	_44
2	6	+					
156		240		75		0	-80
6	5 +	1	1	2	6		
225	149	160		145	150	0	
		17				1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (1,2).
- Начиная с клетки (1,2), строим цикл: $(1,2) \rightarrow (1,1) \rightarrow (2,1) \rightarrow (2,2) \rightarrow (1,2)$.

120		70	<u>-1</u>	134	350	311	0	-44
2	6			+				
156		240			75		0	-80
6	5 +	1	1	_	2	6		
225	149	160			145	150	0	
		1	7				1	4

- Находим клетку с минимальной приведенной стоимостью. Это клетка (1,2).
- Начиная с клетки (1,2), строим цикл: $(1,2) \to (1,1) \to (2,1) \to (2,2) \to (1,2)$.

120		70	-1	134	350	311	0	-44
2	6			+				
156		240			75		0	-80
(5 +	1	1	_	2	6		
225	149	160			145	150	0	
		1	7				1	4

- Среди клеток, помеченных знаком минус выбираем клетку (2,2) с минимальным значением поставки $\min\{26,11\}=11.$
- Прибавляем 11 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 11 от поставок в клетках цикла, помеченных знаком минус.

120		70	-1	134	350	311	0	-44
2	6			+				
156		240			75		0	-80
(5 +	1	1	_	2	6		
225	149	160			145	150	0	
		1	7				1	4

- Среди клеток, помеченных знаком минус выбираем клетку (2,2) с минимальным значением поставки $\min\{26,11\}=11.$
- Прибавляем 11 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 11 от поставок в клетках цикла, помеченных знаком минус.

120	70	_13	34 350	31	1 0	
26		11	+			
156	240		75		0	-80
6 +	-	11	-	26		
225 14	19 160		145	150	0 0	
		17			1	14

- Среди клеток, помеченных знаком минус выбираем клетку (2,2) с минимальным значением поставки $\min\{26,11\}=11.$
- Прибавляем 11 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 11 от поставок в клетках цикла, помеченных знаком минус.

120	70 –134	350 311	0 -44
15	11		
156	240	75	0 -80
6 +	11	26	
225 149	160	145 150	0
	17		14

- Среди клеток, помеченных знаком минус выбираем клетку (2,2) с минимальным значением поставки $\min\{26,11\}=11.$
- Прибавляем 11 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 11 от поставок в клетках цикла, помеченных знаком минус.

120		70	-134	350	311	0	-44
1	5	1	1				
156		240		75		0	-80
1	7 +	1	1	2	6		
225	149	160		145	150	0	
		1	7			1	4

- Среди клеток, помеченных знаком минус выбираем клетку (2,2) с минимальным значением поставки $\min\{26,11\}=11.$
- Прибавляем 11 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 11 от поставок в клетках цикла, помеченных знаком минус.

120	70 –13	4 350	311	0	-44
15	11	-			
156	240	75		0	-80
17 +	0	- 2	6		
225 149	160	145	150	0	
	17			1	4

- Среди клеток, помеченных знаком минус выбираем клетку (2,2) с минимальным значением поставки $\min\{26,11\}=11.$
- Прибавляем 11 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 11 от поставок в клетках цикла, помеченных знаком минус.

120		70	<u> </u>	134	350	311	0	-44
15		1	1	+				
156		240			75		0	-80
17	-			_	2	6		
225 14	49	160			145	150	0	
		1	7				1	4

- Среди клеток, помеченных знаком минус выбираем клетку (2,2) с минимальным значением поставки $\min\{26,11\}=11.$
- Прибавляем 11 к поставкам в клетках цикла, помеченных знаком плюс, и отнимаем 11 от поставок в клетках цикла, помеченных знаком минус.

120		70		350		0	
1	5	1	1				
156		240		75		0	
1	7			2	6		
225		160		145	150	0	
		1	7			1	4

Итерация 2 завершена.

120	70	350	0
15	11		
156	240	75	0
17		26	
225	160	145	0
	17		14

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

120	70	3	50	0	
15		11			
156	240	7	'5	0	
17	,		26		
225	160	1	45	0	
		17		1	4

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

120		70		350		0		0
1:	5	1	1					
156		240		75		0		
1'	7			2	6			
225		160		145		0		
		1	7			1	4	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

120	70	350	0	0
15	11			U
156	240	75	0	
17		26		
225	160	145	0	
	17		14	

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_1 + \beta_1 = 120 \implies \beta_1 = 120 - 0 = 120$$

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_1 + \beta_1 = 120 \implies \beta_1 = 120 - 0 = 120$$

Транспортная задача Агрегир, планирование

• Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.

Вычисляем остальные потенциалы:

Итерация 3: вычисление потенциалов

$$\alpha_1 + \beta_2 = 70 \implies \beta_2 = 70 - 0 = 70$$

120	70	350	0	
15	11			0
156	240	75	0	
17		26		
225	160	145	0	
	17		14	
120	70	·		

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_1 + \beta_2 = 70 \implies \beta_2 = 70 - 0 = 70$$

120	70	350	0	7
		330		0
15	11			
156	240	75	0	
17		26		
225	160	145	0	
	17		14	
120	70			_

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_1 = 156 \implies \alpha_2 = 156 - 120 = 36$$

				_
120	70	350	0	0
15	11			
156	240	75	0	26
17		26		36
225	160	145	0	
	17		14	
120	70			

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_1 = 156 \implies \alpha_2 = 156 - 120 = 36$$

120	70	350	0	\bigcap_{0}
15	11			
156	240	75	0	36
17		26		30
225	160	145	0	
	17		14	
120	70			

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_3 = 75 \implies \beta_3 = 75 - 36 = 39$$

120	70	350	0	
15	11			0
156	240	75	0	7
17		26		36
225	160	145	0	
	17		14	
120	70	39		

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_2 + \beta_3 = 75 \implies \beta_3 = 75 - 36 = 39$$

120	70	350	0	0
15	11			
156	240	75	0	26
17		26		36
225	160	145	0	
	17		14	
120	70	39		_

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_3 + \beta_2 = 160 \Rightarrow \alpha_3 = 160 - 70 = 90$$

120	70	350	0	
15	11			
156	240	75	0	36
17		26		30
225	160	145	0	90
	17		14] 90
120	70	39		

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_3 + \beta_2 = 160 \implies \alpha_3 = 160 - 70 = 90$$

120	70	350	0	0
15	11			
156	240	75	0	36
17		26		30
225	160	145	0	00
	17		14	90
120	70	39		

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_3 + \beta_4 = 0 \implies \beta_4 = 0 - 90 = -90$$

٦.				
	0	350	70	120
0			11	15
36	0	75	240	156
30		26		17
90	0	145	160	225
] 90	14		17	
	-90	39	70	120

- Строке 1 произвольно приписываем потенциал $\alpha_1 = 0$.
- Вычисляем остальные потенциалы:

$$\alpha_3 + \beta_4 = 0 \implies \beta_4 = 0 - 90 = -90$$

120	70	350	0	
15	11			0
156	240	75	0	26
17		26		36
225	160	145	0	
	17		14	90
120	70	39	-90	_

Для каждой небазисной клетки вычисляем приведенную стоимость:

120	70	350	0	0
15	11			
156	240	75	0	26
17		26		36
225	160	145	0	00
	17		14	90
120	70	39	-90	

Для каждой небазисной клетки вычисляем приведенную стоимость:

120	70	350	0	
15	11			0
156	240	75	0	26
17		26		36
225	160	145	0	00
	17		14	90
120	70	39	-90	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{13} = 350 - 0 - 39 = 311$

120	70	350 311	0	
15	11			0
156	240	75	0	26
17		26		36
225	160	145	0	00
	17		14	90
120	70	39	-90	-

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{13} = 350 - 0 - 39 = 311$

120	70	350 311	0	
15	11			0
156	240	75	0	36
17		26		30
225	160	145	0	90
	17		14	
120	70	39	-90	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{14} = 0 - 0 - (-90) = 90$

Транспортная задача Агрегир, планирование

120	70	350 311	0 90	
15	11			0
156	240	75	0	26
17		26		36
225	160	145	0	00
	17		14	90
120	70	39	-90	

Итерация 3: вычисление приведенных стоимостей

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{14} = 0 - 0 - (-90) = 90$

120	70	350 311	0 90	
15	11			0
156	240	75	0	26
17		26		36
225	160	145	0	00
	17		14	90
120	70	39	-90	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{23} = 240 - 36 - 70 = 134$

134 | 75 -90

Итерация 3: вычисление приведенных стоимостей

Для каждой небазисной клетки вычисляем приведенную $\bar{c}_{23} = 240 - 36 - 70 = 134$ стоимость:

120	70	350 311	0 90	
15	11			0
156	240 134	75	0	26
17		26		36
225	160	145	0	00
	17		14	90
120	70	39	-90	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{24} = 0 - 36 - (-90) = 54$

120	70	350 311	0 90	
15	11			0
156	240 134	75	0 54	26
17		26		36
225	160	145	0	00
	17		14	90
120	70	39	-90	

Для каждой небазисной клетки вычисляем приведенную $\bar{c}_{24} = 0 - 36 - (-90) = 54$ стоимость:

120	70	350 311	0 90	
15	11			0
156	240 134	75	0 54	26
17		26		36
225	160	145	0	00
	17		14	90
120	70	39	-90	

Для каждой небазисной клетки вычисляем приведенную $\bar{c}_{31} = 225 - 90 - 120 = 15$ стоимость:

120		70		350	311	0	90	0
1	5	1	1					0
156		240	134	75		0	54	26
1	7			2	6			36
225	15	160		145		0		00
		1	7			1	4	90
12	20	7	0	3	9	_	90	

Для каждой небазисной клетки вычисляем приведенную $\bar{c}_{31} = 225 - 90 - 120 = 15$ стоимость:

120		70		350	311	0	90	0
1:	5	1	1					0
156		240	134	75		0	54	26
1'	7			2	6			36
225	15	160		145		0		00
		1	7			1	4	90
12	20	7	0	3	9	_	90	

Для каждой небазисной клетки вычисляем приведенную $\bar{c}_{33} = 145 - 90 - 39 = 16$ стоимость:

120	70	350 311	0 90	0
15	11			0
156	240 134	75	0 54	26
17		26		36
225 15	160	145 16	0	00
	17		14	90
120	70	39	-90	

Для каждой небазисной клетки вычисляем приведенную стоимость: $\bar{c}_{33} = 145 - 90 - 39 = 16$

120		70		350	311	0	90	0
1	5	1	1					U
156		240		75		0	54	26
1	7			2	6			36
225	15	160		145	16	0		00
		1	7			1	4	90
12	20	7	0	3	9	_	90	

120		70		350	311	0	90	0
1	5	1	1					0
156		240		75		0	54	26
1	7			2	6			36
225	15	160		145	16	0		00
		1	7			1	4	90
12	20	7	0	3	9	_	90	

Поскольку приведенные стоимости во всех клетках неотрицательны, то текущий план оптимален.

ие ЛП формулировка Метод потенциалов Пример

Итерация 3: оптимальный план

120		70		350	311	0	90	0
1.	5	1	1					U
156		240		75		0	54	36
1	7			2	6			30
225	15	160		145	16	0		00
		1	7			1	4	90
120		7	0	3	9	_	90	

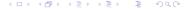
- из города 1: 15 автомобилей в город 4 и 11 автомобилей в город 5:
- из города 2: 17 автомобилей в город 4 и 26 автомобилей в город 6;
- из города 3: 17 автомобилей в город 5.

ЛП формулировка Метод потенциалов Пример

Итерация 3: оптимальный план

120		70		350	311	0	90	0
1.	5	1	1					
156		240		75		0	54	26
1	7		,	2	6		,	36
225	15	160		145	16	0		90
		1	7			1	4	90
120		7	0	3	9	_	90	

- из города 1: 15 автомобилей в город 4 и 11 автомобилей в город 5;
- из города 2: 17 автомобилей в город 4 и 26 автомобилей в город 6;
- из города 3: 17 автомобилей в город 5.


	90	0	311	350		70		120
					1	1	5	1.
36	54	0		75		240		156
30			5	2			7	1
00		0	16	145		160	15	225
90	4	1			7	1		
	90	_)	3	70	7	120	

- из города 1: 15 автомобилей в город 4 и 11 автомобилей в город 5;
- из города 2: 17 автомобилей в город 4 и 26 автомобилей в город 6;
- из города 3: 17 автомобилей в город 5.

120		70		350	311	0	90	0
1.	5	1	1					0
156		240		75		0	54	26
1	7			2	6			36
225	15	160		145	16	0		00
		1	7			1	4	90
120		7	0	3	9	_	90	

- из города 1: 15 автомобилей в город 4 и 11 автомобилей в город 5;
- из города 2: 17 автомобилей в город 4 и 26 автомобилей в город 6;
- из города 3: 17 автомобилей в город 5.

120	_	70	1	350	311	0	90	0
1	3	1	1					
156		240		75		0	54	36
1	7			2	6			
225	15	160		145	16	0		00
		1	7			1	4	90
120		7	0	3	9	-	90	

- из города 1: 15 автомобилей в город 4
 и 11 автомобилей в город 5;
- из города 2: 17 автомобилей в город 4 и 26 автомобилей в город 6;
- из города 3: 17 автомобилей в город 5.

120		70		350	311	0	90	0
1.	5	1	1					0
156		240	134	75		0	54	26
1	7			2	6			36
225	15	160		145	16	0		90
		17				1	4	90
120		7	0	3	9	_	90	

- из города 1: 15 автомобилей в город 4 и 11 автомобилей в город 5;
- из города 2: 17 автомобилей в город 4 и 26 автомобилей в город 6;
- из города 3: 17 автомобилей в город 5.

- Предприятие, к-рое осуществляет сборку автомобилей, должно разработать агрег. план на месяц (4 недели).
- Прогнозируемый спрос 100 автомобилей в неделю.
- Произв. возможности предприятия 440 автомобилей:
 недели 1,4: 60 в регулярное время и 20 во внеурочное.
 недели 2,3: 100 в регулярное время и 40 во внеурочное.
- Поскольку проив. возможности превышают спрос на 40 автомобилей $(2 \cdot (60 + 20 + 100 + 40) 4 \cdot 100)$, то решено к концу месяца накопить на складе 20 автомобилей.
- В начале месяца на складе имеется 10 автомобилей.
- Затраты на сборку одного автомобиля в регулярное время \$150, а во внеурочное \$200.
- Стоимость хранения 1-го автомобиля за неделю = \$5.
- Автомобили могут поставляться с задержкой на неделю. При этом дилеры получают автомобили со скидкой \$50.

- Предприятие, к-рое осуществляет сборку автомобилей, должно разработать агрег. план на месяц (4 недели).
- ullet Прогнозируемый спрос 100 автомобилей в неделю.
- Произв. возможности предприятия 440 автомобилей:
 недели 1,4: 60 в регулярное время и 20 во внеурочное.
 недели 2,3: 100 в регулярное время и 40 во внеурочное.
- Поскольку проив. возможности превышают спрос на 40 автомобилей $(2 \cdot (60 + 20 + 100 + 40) 4 \cdot 100)$, то решено к концу месяца накопить на складе 20 автомобилей.
- В начале месяца на складе имеется 10 автомобилей.
- Затраты на сборку одного автомобиля в регулярное время \$150, а во внеурочное \$200.
- Стоимость хранения 1-го автомобиля за неделю = \$5.
- Автомобили могут поставляться с задержкой на неделю. При этом дилеры получают автомобили со скидкой \$50.

- Предприятие, к-рое осуществляет сборку автомобилей, должно разработать агрег. план на месяц (4 недели).
- \bullet Прогнозируемый спрос 100 автомобилей в неделю.
- Произв. возможности предприятия 440 автомобилей:
 - недели 1,4: 60 в регулярное время и 20 во внеурочное.
 - недели 2,3: 100 в регулярное время и 40 во внеурочное.
- Поскольку проив. возможности превышают спрос на 40 автомобилей $(2 \cdot (60 + 20 + 100 + 40) 4 \cdot 100)$, то решено к концу месяца накопить на складе 20 автомобилей.
- В начале месяца на складе имеется 10 автомобилей.
- Затраты на сборку одного автомобиля в регулярное время \$150, а во внеурочное \$200.
- Стоимость хранения 1-го автомобиля за неделю = \$5.
- Автомобили могут поставляться с задержкой на неделю. При этом дилеры получают автомобили со скидкой \$50.

- Предприятие, к-рое осуществляет сборку автомобилей, должно разработать агрег. план на месяц (4 недели).
- \bullet Прогнозируемый спрос 100 автомобилей в неделю.
- Произв. возможности предприятия 440 автомобилей:
 - недели 1,4: 60 в регулярное время и 20 во внеурочное.
 - недели 2,3: 100 в регулярное время и 40 во внеурочное.
- Поскольку проив. возможности превышают спрос на 40 автомобилей $(2 \cdot (60 + 20 + 100 + 40) 4 \cdot 100)$, то решено к концу месяца накопить на складе 20 автомобилей.
- В начале месяца на складе имеется 10 автомобилей.
- Затраты на сборку одного автомобиля
 в регулярное время \$150, а во внеурочное \$200.
- Стоимость хранения 1-го автомобиля за неделю = \$5.
- Автомобили могут поставляться с задержкой на неделю. При этом дилеры получают автомобили со скидкой \$50.

- Предприятие, к-рое осуществляет сборку автомобилей, должно разработать агрег. план на месяц (4 недели).
- ullet Прогнозируемый спрос 100 автомобилей в неделю.
- Произв. возможности предприятия 440 автомобилей:
 - недели 1,4: 60 в регулярное время и 20 во внеурочное.
 - недели 2,3: 100 в регулярное время и 40 во внеурочное.
- Поскольку проив. возможности превышают спрос на 40 автомобилей $(2 \cdot (60 + 20 + 100 + 40) 4 \cdot 100)$, то решено к концу месяца накопить на складе 20 автомобилей.
- В начале месяца на складе имеется 10 автомобилей.
- Затраты на сборку одного автомобиля в регулярное время \$150, а во внеурочное \$200.
- Стоимость хранения 1-го автомобиля за неделю = \$5.
- Автомобили могут поставляться с задержкой на неделю. При этом дилеры получают автомобили со скидкой \$50.

- Предприятие, к-рое осуществляет сборку автомобилей, должно разработать агрег. план на месяц (4 недели).
- ullet Прогнозируемый спрос 100 автомобилей в неделю.
- Произв. возможности предприятия 440 автомобилей:
 - недели 1,4: 60 в регулярное время и 20 во внеурочное.
 - недели 2,3: 100 в регулярное время и 40 во внеурочное.
- Поскольку проив. возможности превышают спрос на 40 автомобилей $(2 \cdot (60 + 20 + 100 + 40) 4 \cdot 100)$, то решено к концу месяца накопить на складе 20 автомобилей.
- В начале месяца на складе имеется 10 автомобилей.
- Затраты на сборку одного автомобиля в регулярное время \$150, а во внеурочное \$200.
- Стоимость хранения 1-го автомобиля за неделю = \$5.
- Автомобили могут поставляться с задержкой на неделю. При этом дилеры получают автомобили со скидкой \$50.

- Предприятие, к-рое осуществляет сборку автомобилей, должно разработать агрег. план на месяц (4 недели).
- ullet Прогнозируемый спрос 100 автомобилей в неделю.
- Произв. возможности предприятия 440 автомобилей:
 - недели 1,4: 60 в регулярное время и 20 во внеурочное.
 - недели 2,3: 100 в регулярное время и 40 во внеурочное.
- Поскольку проив. возможности превышают спрос на 40 автомобилей $(2 \cdot (60 + 20 + 100 + 40) 4 \cdot 100)$, то решено к концу месяца накопить на складе 20 автомобилей.
- В начале месяца на складе имеется 10 автомобилей.
- Затраты на сборку одного автомобиля в регулярное время \$150, а во внеурочное \$200.
- Стоимость хранения 1-го автомобиля за неделю = \$5.
- Автомобили могут поставляться с задержкой на неделю. При этом дилеры получают автомобили со скидкой \$50.

- Предприятие, к-рое осуществляет сборку автомобилей, должно разработать агрег. план на месяц (4 недели).
- \bullet Прогнозируемый спрос 100 автомобилей в неделю.
- Произв. возможности предприятия 440 автомобилей:
 - недели 1,4: 60 в регулярное время и 20 во внеурочное.
 - недели 2,3: 100 в регулярное время и 40 во внеурочное.
- Поскольку проив. возможности превышают спрос на 40 автомобилей $(2 \cdot (60 + 20 + 100 + 40) 4 \cdot 100)$, то решено к концу месяца накопить на складе 20 автомобилей.
- В начале месяца на складе имеется 10 автомобилей.
- Затраты на сборку одного автомобиля в регулярное время \$150, а во внеурочное \$200.
- Стоимость хранения 1-го автомобиля за неделю = \$5.
- Автомобили могут поставляться с задержкой на неделю. При этом дилеры получают автомобили со скидкой \$50.

- Предприятие, к-рое осуществляет сборку автомобилей, должно разработать агрег. план на месяц (4 недели).
- ullet Прогнозируемый спрос 100 автомобилей в неделю.
- Произв. возможности предприятия 440 автомобилей:
 - недели 1,4: 60 в регулярное время и 20 во внеурочное.
 - недели 2,3: 100 в регулярное время и 40 во внеурочное.
- Поскольку проив. возможности превышают спрос на 40 автомобилей $(2 \cdot (60 + 20 + 100 + 40) 4 \cdot 100)$, то решено к концу месяца накопить на складе 20 автомобилей.
- В начале месяца на складе имеется 10 автомобилей.
- Затраты на сборку одного автомобиля в регулярное время \$150, а во внеурочное \$200.
- Стоимость хранения 1-го автомобиля за неделю = \$5.
- Автомобили могут поставляться с задержкой на неделю. При этом дилеры получают автомобили со скидкой \$50.

- Предприятие, к-рое осуществляет сборку автомобилей, должно разработать агрег. план на месяц (4 недели).
- \bullet Прогнозируемый спрос 100 автомобилей в неделю.
- Произв. возможности предприятия 440 автомобилей:
 - недели 1,4: 60 в регулярное время и 20 во внеурочное.
 - недели 2,3: 100 в регулярное время и 40 во внеурочное.
- Поскольку проив. возможности превышают спрос на 40 автомобилей $(2 \cdot (60 + 20 + 100 + 40) 4 \cdot 100)$, то решено к концу месяца накопить на складе 20 автомобилей.
- В начале месяца на складе имеется 10 автомобилей.
- Затраты на сборку одного автомобиля в регулярное время \$150, а во внеурочное \$200.
- Стоимость хранения 1-го автомобиля за неделю = \$5.
- Автомобили могут поставляться с задержкой на неделю. При этом дилеры получают автомобили со скидкой \$50.

- Прогнозируемый спрос 100 автомобилей в неделю.
- Произв. возможности предприятия 440 автомобилей:
 - недели 1,4: 60 в регулярное время и 20 во внеурочное.
 - недели 2,3: 100 в регулярное время и 40 во внеурочное.
- Поскольку проив. возможности превышают спрос на 40 автомобилей $(2 \cdot (60 + 20 + 100 + 40) 4 \cdot 100)$, то решено к концу месяца накопить на складе 20 автомобилей.
- В начале месяца на складе имеется 10 автомобилей.
- Затраты на сборку одного автомобиля в регулярное время \$150, а во внеурочное \$200.
- Стоимость хранения 1-го автомобиля за неделю = \$5.
- Автомобили могут поставляться с задержкой на неделю. При этом дилеры получают автомобили со скидкой \$50.
- Нужно определить сколько автомобилей производить в каждую из недель, чтобы полностью удовлетворить спрос с минимальными затратами (на сборку и хранение автомобилей + скидки за поздние поставки).

	Периолы	Периоды по	отребления	O.	Неисп.	Произв.
п	Периоды роизводства					
	Склад					
1	Регулярное время					
1	Внеурочное время					
2	Регулярное время					
2	Внеурочное время					
	Регулярное время					
3	Внеурочное время					
4	Регулярное время					
	Внеурочное время					
	Спрос					

	Периоды роизводства		Периоды п	отребления		Склад	Неисп. мощн.	Произв.
п	роизводства	1	2	3	4	СКЛАД		
	Склад							
1	Регулярное время							
1	Внеурочное время							
2	Регулярное время							
2	Внеурочное время							
	Регулярное время							
3	Внеурочное время							
4	Регулярное время							
4	Внеурочное время							
	Спрос							

	Периоды		Периоды по	отребления		Склад	Неисп.	Произв.
П	Периоды роизводства	1	2	3	4	Склад		
	Склад							
	Регулярное время							
1	Внеурочное время							
2	Регулярное время							
2	Внеурочное время							
	Регулярное время							
3	Внеурочное время							
4	Регулярное время							
4	Внеурочное время							
	Спрос	100	100	100	100	20		

	Периоды		Периоды по			Склал	Склад Неисп		
П	роизводства	1	2	3	4	Склад		Произв. мощн.	
	Склад							10	
1	Регулярное время							60	
1	Внеурочное время							20	
2	Регулярное время							100	
2	Внеурочное время							40	
	Регулярное время							100	
3	Внеурочное время							40	
4	Регулярное время							60	
4	Внеурочное время							20	
	Спрос	100	100	100	100	20			

	Периоды		Периоды по			Склал	Склад Неисп.		
П	роизводства	1	2	3	4	Оклад	мощн.	Произв. мощн.	
	Склад							10	
1	Регулярное время							60	
1	Внеурочное время							20	
2	Регулярное время							100	
2	Внеурочное время							40	
	Регулярное время							100	
3	Внеурочное время							40	
4	Регулярное время							60	
4	Внеурочное время							20	
	Спрос	100	100	100	100	20	30	450	

п	Периоды роизводства	1	Периоды по	отребления	4	Склад	Неисп. мощн.	Произв. мощн.
	Склад	0	5	10	15	20	0	10
1	Регулярное время							60
1	Внеурочное время							20
2	Регулярное время							100
4	Внеурочное время							40
	Регулярное время							100
3	Внеурочное время							40
4	Регулярное время							60
4	Внеурочное время							20
	Спрос	100	100	100	100	20	30	450

	Периоды			отребления		Склад	Неисп.	Произв.
п	роизводства	1	2	3	4		мощн.	мощн.
	Склад	0	5	10	15	20	0	10
1	Регулярное время	150	155	160	165	170	0	60
1	Внеурочное время							20
2	Регулярное время							100
	Внеурочное время							40
	Регулярное время							100
3	Внеурочное время							40
4	Регулярное время							60
4	Внеурочное время							20
	Спрос	100	100	100	100	20	30	450

п	Периоды роизводства	1	Периоды по	отребления	4	Склад	Неисп. мощн.	Произв. мощн.
	Склад	0	5	10	15	20	0	10
,	Регулярное время	150	155	160	165	170	0	60
1	Внеурочное время	200	205	210	215	220	0	20
2	Регулярное время							100
	Внеурочное время							40
	Регулярное время							100
3	Внеурочное время							40
4	Регулярное время							60
4	Внеурочное время							20
	Спрос	100	100	100	100	20	30	450

	Периоды		Периоды п			Склад	Неисп.	Произв.
П	роизводства	1	2	3	4		мощн.	мощн.
	Склад	0	5	10	15	20	0	10
,	Регулярное время	150	155	160	165	170	0	60
1	Внеурочное время	200	205	210	215	220	0	20
2	Регулярное время	200	150	155	160	165	0	100
2	Внеурочное время							40
	Регулярное время							100
3	Внеурочное время							40
4	Регулярное время							60
4	Внеурочное время							20
	Спрос	100	100	100	100	20	30	450

п	Периоды роизводства	1	Периоды по 2	отребления З	4	Склад	Неисп. мощн.	Произв. мощн.
	Склад	0	5	10	15	20	0	10
1	Регулярное время	150	155	160	165	170	0	60
1	Внеурочное время	200	205	210	215	220	0	20
2	Регулярное время	200	150	155	160	165	0	100
2	Внеурочное время	250	200	205	210	215	0	40
	Регулярное время							100
3	Внеурочное время							40
4	Регулярное время							60
4	Внеурочное время							20
	Спрос	100	100	100	100	20	30	450

п	Периоды роизводства	1	Периоды по 2	отребления 3	4	Склад	Неисп. мощн.	Произв. мощн.
	Склад	0	5	10	15	20	0	10
	Регулярное время	150	155	160	165	170	0	60
1	Внеурочное время	200	205	210	215	220	0	20
0	Регулярное время	200	150	155	160	165	0	100
2	Внеурочное время	250	200	205	210	215	0	40
	Регулярное время	∞	200	150	155	160	0	100
3	Внеурочное время							40
4	Регулярное время							60
4	Внеурочное время							20
	Спрос	100	100	100	100	20	30	450

	Периоды		Периоды п			Склад	Неисп.	Произв.
п	роизводства	1	2	3	4		мощн.	мощн.
	Склад	0	5	10	15	20	0	10
	Регулярное время	150	155	160	165	170	0	60
1	Внеурочное время	200	205	210	215	220	0	20
	Регулярное время	200	150	155	160	165	0	100
2	Внеурочное время	250	200	205	210	215	0	40
	Регулярное время	∞	200	150	155	160	0	100
3	Внеурочное время	∞	250	200	205	210	0	40
4	Регулярное время							60
4	Внеурочное время							20
	Спрос	100	100	100	100	20	30	450

п	Периоды роизводства	1	Периоды по	отребления 3	4	Склад	Неисп. мощн.	Произв. мощн.
	Склад	0	5	10	15	20	0	10
	Регулярное время	150	155	160	165	170	0	60
1	Внеурочное время	200	205	210	215	220	0	20
	Регулярное время	200	150	155	160	165	0	100
2	Внеурочное время	250	200	205	210	215	0	40
	Регулярное время	∞	200	150	155	160	0	100
3	Внеурочное время	∞	250	200	205	210	0	40
	Регулярное время	∞	∞	200	150	155	0	60
4	Внеурочное время							20
	Спрос	100	100	100	100	20	30	450

Периоды производства		1	Периоды п 2	отребления 3	4	Склад	Неисп. мощн.	Произв. мощн.
	Склад	0	5	10	15	20	0	10
1	Регулярное время	150	155	160	165	170	0	60
	Внеурочное время	200	205	210	215	220	0	20
2	Регулярное время	200	150	155	160	165	0	100
	Внеурочное время	250	200	205	210	215	0	40
3	Регулярное время	∞	200	150	155	160	0	100
	Внеурочное время	∞	250	200	205	210	0	40
4	Регулярное время	∞	∞	200	150	155	0	60
	Внеурочное время	∞	∞	250	200	205	0	20
	Спрос	100	100	100	100	20	30	450

п	Периоды роизводства	1	Периоды по 2	отребления 3	4	Склад	Неисп. мощн.	Произв. мощн.
	Склад	10	5	10	15	20	0	10
1	Регулярное время	150 60	155	160	165	170	0	60
	Внеурочное время	200	205	210	215	220	0	20
2	Регулярное время	200	150 90	155	160	165	0	100
	Внеурочное время	250	200	205	210	215	0	40
3	Регулярное время	∞	200	150 70	155 30	160	0	100
	Внеурочное время	∞	250	200	205 40	210	0	40
4	Регулярное время	∞	∞	200	150 30	155	10	60
	Внеурочное время	∞	∞	250	200	205	20	20
	Спрос	100	100	100	100	20	30	450